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Geometry and topology entering quantum mechanics



Archetypes

1954 Yang-Mills gauge theory (relativistic QM)

Geometrical meaning understood only in the 1970s, after
C.N. Yang interacted with mathematicians
(Singer, Atiyah, Chern...)

1959 Aharonov-Bohm experiment (nonrelativistic QM)

Geometrical meaning understood only after the famous
paper by Michael Berry (1984)

1982 From geometry to topology: TKNN
(Thouless, Kohmoto, Nightingale, and den Nijs)



Aharonov-Bohm, 1959

Fig. 15-6. The magnetic fleld and
vector potential of a long solenoid.

m Figure from Feynman, Vol. 2 (1963)
m Main message:

m Classical particles: only the fields may act on them
m Quantum particles: the potentials act on them even when
no field is present



Aharonov-Bohm, 1959

Fig. 15-6. The magnetic fleld and
vector potential of a long solenoid.

m Figure from Feynman, Vol. 2 (1963)
m Main message:
m Classical particles: only the fields may act on them
m Quantum particles: the potentials act on them even when

no field is present
m Why such difference?



Berry phase, 1984

m Very simple concept, nonetheless missed by the founding
fathers of QM in the 1920s and 1940s

m Nowadays in any modern elementary QM textbook
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m After Berry, we have two kinds of observables:
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m Gauge-invariant phases of the wavefunction
(no operator whatsoever)



Berry phase, 1984

m Very simple concept, nonetheless missed by the founding
fathers of QM in the 1920s and 1940s

m Nowadays in any modern elementary QM textbook

m After Berry, we have two kinds of observables:

m Expectation values of some operator
m Gauge-invariant phases of the wavefunction
(no operator whatsoever)

m Main message:
In QM anything gauge-invariant is in principle observable!



Michael Berry
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What topology is about



Topology

m Branch of mathematics that describes properties which
remain unchanged under smooth deformations

m Such properties are often labeled by integer numbers:
topological invariants

m Founding concepts: continuity and connectivity, open &
closed sets, neighborhood......

m Differentiability or even a metric not needed



Topology

m Branch of mathematics that describes properties which
remain unchanged under smooth deformations

m Such properties are often labeled by integer numbers:
topological invariants

m Founding concepts: continuity and connectivity, open &
closed sets, neighborhood......

m Differentiability or even a metric not needed
(although most welcome!)



A coffee cup and a doughnut are the same

To

a
= D=

isa
Doughnut

Topological invariant: genus (=1 here)



Gaussian curvature: sphere

In a local set of coordinates in the
tangent plane




Gaussian curvature: sphere

In a local set of coordinates in the
tangent plane

Hessian H:(1/R 0 )

Gaussian curvature K=detH = %



Positive and negative curvature

Smooth surface, local set of coordinates on the tangent plane

9%z 5z
K = det ( ox>  OxJy >

92z 92z
oyox oy?




Twist angle vs. Gaussian curvature

Gaussian curvature of the
spherical surface K = 1/R?

m Angular mismatch for parallel transport:

’y:/daK



Twist angle vs. Gaussian curvature

Gaussian curvature of the
spherical surface K = 1/R?

m Angular mismatch for parallel transport:

’y:/daK

m Equivalently: sum of the three angles:

Oz1—i—0¢2—|—0&3:7T—|—’)/:7T—|—/dO'K



What about integrating over a closed surface?

m Sphere:



What about integrating over a closed surface?

m Sphere:

m Torus:



Gauss-Bonnet theorem (1848)

Over a smooth closed surface:

1
Z/SdaK_2(1—g)

m Genus g integer: counts the number of “handles”
m Same g for homeomorphic surfaces

(continuous stretching and bending into a new shape)
m Differentiability not needed

1




Gauss-Bonnet theorem (1848)

Over a smooth closed surface:

1
Z/SdaK_ZU—g)

m Genus g integer: counts the number of “handles”
m Same g for homeomorphic surfaces
(continuous stretching and bending into a new shape)

m Differentiability not needed
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Topology shows up in electronic structure



Integer quantum Hall effect

g IV

Figure from von Klitzing et al. (1980).

Gate voltage V, was supposed to
control the carrier density.

—w Plateau flat to five decimal figures



Integer quantum Hall effect

g IV

Figure from von Klitzing et al. (1980).

Gate voltage V, was supposed to
control the carrier density.

—w Plateau flat to five decimal figures

Natural resistance unit:
1 klitzing = h/e2 = 25812.807557(18) ohm.
This experiment: Ry = klitzing/4



More recent experiments
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Magnetic Field (T)
GaAs-GaAlAs heterojunction, at 30mK

m Plateaus accurate to nine decimal figures

m In the plateau regions pxx = 0 and oy = 0:
“quantum Hall insulator”

0.2




Landau levels (flat potential)
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m Number of states in each Landau level: —Bﬁf/rga

m oxx = 0 seems to require very fine tuning!



Continuous “deformation” of the wave function

m Topological invariant:
Quantity that does not change under continuous

deformation

Density of states

Density of states

hw, 2 hw, g hao, % ho,

b=

Localized states
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m Topological invariant:
Quantity that does not change under continuous
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m From a clean sample (flat substrate potential)
to a dirty sample (disordered substrate potential)

Density of states

Density of states

hw, 2 hw, g hao, % ho,

b=

Localized states



Continuous “deformation” of the wave function

m Topological invariant:
Quantity that does not change under continuous
deformation

m From a clean sample (flat substrate potential)
to a dirty sample (disordered substrate potential)

m oy, is some “genus” of the ground-state wavefunction

Fermi

Mobility ~ Mobility  level
edges |

Density of states

Density of states

7
hw, % hw, g hao, 3 ho,

b=

Localized states
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TKNN invariant (a.k.a. Chern number)



Quantum Mechanics: Berry curvature

Parametric Hamiltonian
on a closed surface (a torus) :
H(9,¢) = H(V + 2m,¢) = H(J, ¢ + 27)

Ground nondegenerate eigenstate |yg (1, ©))

m Berry curvature:
. 0 0 0 0
Q(0.0) =1 ( (35500l o) — (5ol o)

m Chern theorem (1944):

1 2r 2T

o7 dv ; dp Q,p)=Cy €Z



Compare Gauss-Bonnet with Chern

m Gauss-Bonnet theorem:

1

Z/SdaK:2(1 —-9), g=0,12...
m Gauss-Bonnet-Chern theorem:

l/dO‘Q:C17 Ci €7
2T S



Compare Gauss-Bonnet with Chern

m Gauss-Bonnet theorem:
1
ZLdUK_ZU —-9), g=0,12...
m Gauss-Bonnet-Chern theorem:
1
—/dO‘Q:C1, C~|€Z
27T S
m Very robust under deformations of H(¥, ¢):

C, stays constant insofar as the ground state stays
nondegenerate



Back to the IQHE

TKNN:
m Start from the standard Kubo formula for conductivity oy,
m Then transform into o, = 5 Cy = Cy Klitzing ™

- R o
electrical
‘:, > es

Figure downloaded from http://www.nobelprize.org



Robust insofar as the system remains
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Weirdness of macroscopic B fields

m The Hamiltonian cannot be lattice periodical
m Besides IQHE, other weird phenomena were known
m For instance, the Hofstadter butterfly (1976):




Weirdness of macroscopic B fields

m The Hamiltonian cannot be lattice periodical
m Besides IQHE, other weird phenomena were known
m For instance, the Hofstadter butterfly (1976):

m Can a nontrivial topology exist in absence of a B field?



Bloch orbitals

m Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons

Hlvk) = ex|vk)

Hiuk) = ex|uk) u) = e ®T ) Hi = e KTHe k!



Bloch orbitals

m Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons

Hlvk) = ex|vk)

Hiuk) = ex|uk) u) = e ®T ) Hi = e KTHe k!

m Berry curvature (9, ¢) — (K, ky):

(k) = 7 ( (O, Uk| Ok, Ui} — (Ok, Ui | O, Uic) )



Chern number

m BZ is a closed surface (2d torus). Gauss-Bonnet-Chern:

1
— k Q(k) = 7
o Bzd ( ) C1 c

m Constant under deformations of the Hamiltonian

insofar as the gap does not close



Chern number

m BZ is a closed surface (2d torus). Gauss-Bonnet-Chern:

1
5 | dkQk)=Ci ez

m Constant under deformations of the Hamiltonian
insofar as the gap does not close

m 2D crystalline material with Cy # 0:

m Prototype of a topological insulator

m Haldane (1988) proved that such a material could exist

m This “simple” kind of topological insulators synthetized
since 2013 onwards



Qutline

Haldanium



Hexagonal boron nitride (& graphene)

I8 Topologically trivial: Cy = 0.
Al \\Why?



Hexagonal boron nitride (& graphene)

Topologically trivial: C; = 0.

Symmetry properties
m Time-reversal symmetry — Q(k) = —Q(—k)
m Inversion symmetry — Q(k) = Q(—Kk)

m Need to introduce “some magnetism”



Hexagonal boron nitride (& graphene)

Topologically trivial: C; = 0.

Symmetry properties
m Time-reversal symmetry — Q(k) = —Q(—k)
m Inversion symmetry — Q(k) = Q(—Kk)

m Need to introduce “some magnetism”
m Solution: a staggered magnetic field



The “Haldanium” paradigm (F.D.M. Haldane, 1988)

Tight-binding parameters: 2l N S
m 1st-neighbor hopping t AL NI cmo NI
m staggered onsite +A ST w5 o0 05

¢ [in units of «t]

m complex 2nd-neighbor te'® Phase diagram



Topological order
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m Ground state wavefunctions differently “knotted” in k space
m Topological order very robust

m C; switched only via a metallic state: “cutting the knot”

m Displays quantum Hall effect at B =0
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I} Topological marker in r space



Manifesto: k space vs. r space

m Periodic boundary conditions and k vectors are a (very
useful) creation of our mind: they do not exist in nature.



Manifesto: k space vs. r space

m Periodic boundary conditions and k vectors are a (very
useful) creation of our mind: they do not exist in nature.

m Topological order must be detected even:

m Inside finite samples (e.g. bounded crystallites)

m In noncrystalline samples

m In macroscopically inhomogeneous samples
(e.g. heterojunctions)

m In all such cases, the k vector does not make much sense



Manifesto: k space vs. r space

m Is it possible to get rid of k vectors and to detect instead
topological order directly in r space?



Manifesto: k space vs. r space

PHYSICAL REVIEW B 84, 241106(R) (2011)

Mapping topological order in coordinate space

Raffaello Bianco and Raffaele Resta




Our “topological marker”

R. Bianco and R. Resta, Phys. Rev. B (RC) 84, 241106 (2011)

m We design an operator O, explicitly given in the
Schrédinger representation: (r|O|r')

m Our operator is well defined both for unbounded crystals
and for bounded samples (e.g. crystallites)

m The diagonal (r|O]r) has the meaning of curvature per
unit area in r space



Our “topological marker”

R. Bianco and R. Resta, Phys. Rev. B (RC) 84, 241106 (2011)

m We design an operator O, explicitly given in the
Schrédinger representation: (r|O|r')

m Our operator is well defined both for unbounded crystals
and for bounded samples (e.g. crystallites)

m The diagonal (r|O]r) has the meaning of curvature per
unit area in r space
... but fluctuates on a microscopic scale

m lts trace per unit volume in any macroscopically
homogeneous region of the sample yields C;



Haldanium flake (OBCs)
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Sample of 2550 sites, line with 50 sites



Crystalline Haldanium (normal & Chern)
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Topological marker (top); site occupancy (bottom)



Haldanium alloy (normal & Chern)
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Topological marker (top); site occupancy (bottom)



Haldanium heterojunctions
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Conclusions and perspectives

m Topological invariants and topological order
Wave function “knotted” in k space

m Topological invariants are measurable integers
Very robust (“topologically protected”)
Most spectacular: quantum Hall effect

m Topological order without a B field: topological insulators

m Topological order is (also) a local property of the ground-state
wave function: Our simulations



