

Topology in nonrelativistic quantum mechanic

Raffaele Resta

Dipartimento di Fisica Teorica, Università di Trieste, and DEMOCRITOS National Simulation Center, IOM-CNR, Trieste

La Sapienza, Roma, January 24th, 2017

Outline

1 Geometry and topology entering quantum mechanics
2 What topology is about
3 Topology shows up in electronic structure
4 TKNN invariant (a.k.a. Chern number)
5 Haldanium
6 Topological marker in r space
7 Conclusions

Outline

1 Geometry and topology entering quantum mechanics
2 What topology is about
3 Topology shows up in electronic structure
4 TKNN invariant (a.k.a. Chern number)
5 Haldanium
6 Topological marker in r space
7 Conclusions

Archetypes

1954 Yang-Mills gauge theory (relativistic QM)
Geometrical meaning understood only in the 1970s, after
C.N. Yang interacted with mathematicians
(Singer, Atiyah, Chern...)

1959 Aharonov-Bohm experiment (nonrelativistic QM)
Geometrical meaning understood only after the famous paper by Michael Berry (1984)

1982 From geometry to topology: TKNN
(Thouless, Kohmoto, Nightingale, and den Nijs)

Aharonov-Bohm, 1959

Fig. 15-6. The magnetic field and vector potential of a long solenoid.

■ Figure from Feynman, Vol. 2 (1963)

- Main message:

■ Classical particles: only the fields may act on them

- Quantum particles: the potentials act on them even when no field is present

Aharonov-Bohm, 1959

Fig. 15-6. The magnetic field and vector potential of a long solenoid.

■ Figure from Feynman, Vol. 2 (1963)

- Main message:

■ Classical particles: only the fields may act on them

- Quantum particles: the potentials act on them even when no field is present
- Why such difference?

Berry phase, 1984

■ Very simple concept, nonetheless missed by the founding fathers of QM in the 1920s and 1940s
■ Nowadays in any modern elementary QM textbook

■ After Berry, we have two kinds of observables:

■ Expectation values of some operator

- Gauge-invariant phases of the wavefunction (no operator whatsoever)

■ Main message:
In QM anything gauge-invariant is in principle observable!

Berry phase, 1984

■ Very simple concept, nonetheless missed by the founding fathers of QM in the 1920s and 1940s
■ Nowadays in any modern elementary QM textbook
■ After Berry, we have two kinds of observables:

- Expectation values of some operator
- Gauge-invariant phases of the wavefunction (no operator whatsoever)

■ Main message:
In QM anything gauge-invariant is in principle observable!

Berry phase, 1984

■ Very simple concept, nonetheless missed by the founding fathers of QM in the 1920s and 1940s
■ Nowadays in any modern elementary QM textbook

- After Berry, we have two kinds of observables:
- Expectation values of some operator
- Gauge-invariant phases of the wavefunction (no operator whatsoever)
- Main message:

In QM anything gauge-invariant is in principle observable!

Michael Berry

Outline

1 Geometry and topology entering quantum mechanics
2 What topology is about
3 Topology shows up in electronic structure
4 TKNN invariant (a.k.a. Chern number)
5 Haldanium
6 Topological marker in r space
7 Conclusions

Topology

- Branch of mathematics that describes properties which remain unchanged under smooth deformations

■ Such properties are often labeled by integer numbers: topological invariants

■ Founding concepts: continuity and connectivity, open \& closed sets, neighborhood......

- Differentiability or even a metric not needed (although most welcome!)

Topology

- Branch of mathematics that describes properties which remain unchanged under smooth deformations

■ Such properties are often labeled by integer numbers: topological invariants

■ Founding concepts: continuity and connectivity, open \& closed sets, neighborhood......

■ Differentiability or even a metric not needed (although most welcome!)

A coffee cup and a doughnut are the same

Topological invariant: genus (=1 here)

Gaussian curvature: sphere

In a local set of coordinates in the tangent plane

$$
z=R-\sqrt{R^{2}-x^{2}-y^{2}} \simeq \frac{x^{2}+y^{2}}{2 R}
$$

Hessian $\quad H=\left(\begin{array}{cc}1 / R & 0 \\ 0 & 1 / R\end{array}\right)$

Gaussian curvature: sphere

In a local set of coordinates in the tangent plane

$$
z=R-\sqrt{R^{2}-x^{2}-y^{2}} \simeq \frac{x^{2}+y^{2}}{2 R}
$$

Hessian $\quad H=\left(\begin{array}{cc}1 / R & 0 \\ 0 & 1 / R\end{array}\right)$

Gaussian curvature

$$
K=\operatorname{det} H=\frac{1}{R^{2}}
$$

Positive and negative curvature

Planes and Cylinders are of Zero Curvature

Smooth surface, local set of coordinates on the tangent plane

$$
K=\operatorname{det}\left(\begin{array}{cc}
\frac{\partial^{2} z}{\partial x^{2}} & \frac{\partial^{2} z}{\partial x \partial y} \\
\frac{\partial^{2} z}{\partial y \partial x} & \frac{\partial^{2} z}{\partial y^{2}}
\end{array}\right)
$$

Twist angle vs. Gaussian curvature

Gaussian curvature of spherical surface $K=1 / R^{2}$ the

- Angular mismatch for parallel transport:

$$
\gamma=\int d \sigma K
$$

- Equivalently: sum of the three angles:

Twist angle vs. Gaussian curvature

Gaussian curvature of the spherical surface $K=1 / R^{2}$

- Angular mismatch for parallel transport:

$$
\gamma=\int d \sigma K
$$

Equivalently: sum of the three angles:

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}=\pi+\gamma=\pi+\int d \sigma K
$$

What about integrating over a closed surface?

■ Sphere:

$$
K=\frac{1}{R^{2}}, \quad \int d \sigma K=4 \pi R^{2} \frac{1}{R^{2}}=4 \pi
$$

What about integrating over a closed surface?

- Sphere:

$$
K=\frac{1}{R^{2}}, \quad \int d \sigma K=4 \pi R^{2} \frac{1}{R^{2}}=4 \pi
$$

■ Torus:

$$
\int d \sigma K=? ? ?
$$

Gauss-Bonnet theorem (1848)

Over a smooth closed surface:

$$
\frac{1}{2 \pi} \int_{S} d \sigma K=2(1-g)
$$

- Genus g integer: counts the number of "handles"
- Same g for homeomorphic surfaces (continuous stretching and bending into a new shape)
■ Differentiability not needed

$g=0$
$g=1$

Gauss-Bonnet theorem (1848)

Over a smooth closed surface:

$$
\frac{1}{2 \pi} \int_{S} d \sigma K=2(1-g)
$$

- Genus g integer: counts the number of "handles"

■ Same g for homeomorphic surfaces (continuous stretching and bending into a new shape)
■ Differentiability not needed

$g=0$

$g=1$
$g=1$
$g=2$

Outline

1 Geometry and topology entering quantum mechanics
2 What topology is about
3 Topology shows up in electronic structure
4 TKNN invariant (a.k.a. Chern number)
5 Haldanium
6 Topological marker in r space
7 Conclusions

Integer quantum Hall effect

Figure from von Klitzing et al. (1980). Gate voltage V_{g} was supposed to control the carrier density.

Plateau flat to five decimal figures

Natural resistance unit:

1 klitzing $=h / e^{2}=25812.807557(18)$ ohm.
This experiment: $R_{\mathrm{H}}=$ klitzing $/ 4$

Integer quantum Hall effect

Figure from von Klitzing et al. (1980). Gate voltage V_{g} was supposed to control the carrier density.

Plateau flat to five decimal figures
Natural resistance unit:
1 klitzing $=h / e^{2}=25812.807557$ (18) ohm.
This experiment: $R_{\mathrm{H}}=$ klitzing $/ 4$

More recent experiments

GaAs-GaAIAs heterojunction, at 30 mK
Plateaus accurate to nine decimal figures
■ In the plateau regions $\rho_{x x}=0$ and $\sigma_{x x}=0$: "quantum Hall insulator"

Landau levels (flat potential)

Number of states in each Landau level: $\frac{B \times a r e a}{h c / e}$

- $\sigma_{x x}=0$ seems to require very fine tuning!

Continuous "deformation" of the wave function

■ Topological invariant:
Quantity that does not change under continuous deformation

■ From a clean sample (flat substrate potential) to a dirty sample (disordered substrate potential) - $\sigma_{x y}$ is some "genus" of the ground-state wavefunction

Continuous "deformation" of the wave function

■ Topological invariant:
Quantity that does not change under continuous deformation

- From a clean sample (flat substrate potential) to a dirty sample (disordered substrate potential)
- $\sigma_{x y}$ is some "genus" of the ground-state wavefunction

Continuous "deformation" of the wave function

■ Topological invariant:
Quantity that does not change under continuous deformation

■ From a clean sample (flat substrate potential) to a dirty sample (disordered substrate potential)

- $\sigma_{x y}$ is some "genus" of the ground-state wavefunction

Outline

1 Geometry and topology entering quantum mechanics
2 What topology is about
3 Topology shows up in electronic structure
4 TKNN invariant (a.k.a. Chern number)
5 Haldanium
6 Topological marker in r space
7 Conclusions

Quantum Mechanics: Berry curvature

Parametric Hamiltonian
on a closed surface (a torus) :
$H(\vartheta, \varphi)=H(\vartheta+2 \pi, \varphi)=H(\vartheta, \varphi+2 \pi)$
Ground nondegenerate eigenstate $\left|\psi_{0}(\vartheta, \varphi)\right\rangle$

■ Berry curvature:

$$
\Omega(\vartheta, \varphi)=i\left(\left\langle\left.\frac{\partial}{\partial \vartheta} \psi_{0} \right\rvert\, \frac{\partial}{\partial \varphi} \psi_{0}\right\rangle-\left\langle\frac{\partial}{\partial \varphi} \psi_{0} \left\lvert\, \frac{\partial}{\partial \vartheta} \psi_{0}\right.\right\rangle\right)
$$

Chern theorem (1944):

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} d \vartheta \int_{0}^{2 \pi} d \varphi \Omega(\vartheta, \varphi)=C_{1} \in \mathbb{Z}
$$

Compare Gauss-Bonnet with Chern

■ Gauss-Bonnet theorem:

$$
\frac{1}{2 \pi} \int_{S} d \sigma K=2(1-g), \quad g=0,1,2, \ldots
$$

■ Gauss-Bonnet-Chern theorem:

$$
\frac{1}{2 \pi} \int_{S} d \sigma \Omega=C_{1}, \quad C_{1} \in \mathbb{Z}
$$

- Very robust under deformations of $H(\vartheta, \varphi)$:
C_{1} stays constant insofar as the ground state stays
nondegenerate

Compare Gauss-Bonnet with Chern

- Gauss-Bonnet theorem:

$$
\frac{1}{2 \pi} \int_{S} d \sigma K=2(1-g), \quad g=0,1,2, \ldots
$$

■ Gauss-Bonnet-Chern theorem:

$$
\frac{1}{2 \pi} \int_{S} d \sigma \Omega=C_{1}, \quad C_{1} \in \mathbb{Z}
$$

■ Very robust under deformations of $H(\vartheta, \varphi)$:
C_{1} stays constant insofar as the ground state stays nondegenerate

Back to the IQHE

TKNN:

- Start from the standard Kubo formula for conductivity $\sigma_{x y}$

■ Then transform into $\sigma_{x y}=\frac{h}{e^{2}} C_{1}=C_{1}$ klitzing $^{-1}$

Figure downloaded from http://www.nobelprize.org

Robust insofar as the system remains

Weirdness of macroscopic B fields

■ The Hamiltonian cannot be lattice periodical
■ Besides IQHE, other weird phenomena were known
■ For instance, the Hofstadter butterfly (1976):

Weirdness of macroscopic B fields

■ The Hamiltonian cannot be lattice periodical
■ Besides IQHE, other weird phenomena were known
■ For instance, the Hofstadter butterfly (1976):

■ Can a nontrivial topology exist in absence of a B field?

Bloch orbitals

■ Lattice-periodical Hamiltonian (no macroscopic B field); 2d, single band, spinless electrons

$$
\begin{aligned}
H\left|\psi_{\mathbf{k}}\right\rangle & =\varepsilon_{\mathbf{k}}\left|\psi_{\mathbf{k}}\right\rangle \\
H_{\mathbf{k}}\left|u_{\mathbf{k}}\right\rangle & =\varepsilon_{\mathbf{k}}\left|u_{\mathbf{k}}\right\rangle \quad\left|u_{\mathbf{k}}\right\rangle=\mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}}\left|\psi_{\mathbf{k}}\right\rangle \quad H_{\mathbf{k}}=\mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}} H \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}}
\end{aligned}
$$

Bloch orbitals

■ Lattice-periodical Hamiltonian (no macroscopic B field); 2d, single band, spinless electrons

$$
\begin{aligned}
H\left|\psi_{\mathbf{k}}\right\rangle & =\varepsilon_{\mathbf{k}}\left|\psi_{\mathbf{k}}\right\rangle \\
H_{\mathbf{k}}\left|u_{\mathbf{k}}\right\rangle & =\varepsilon_{\mathbf{k}}\left|u_{\mathbf{k}}\right\rangle \quad
\end{aligned} \quad\left|u_{\mathbf{k}}\right\rangle=\mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}}\left|\psi_{\mathbf{k}}\right\rangle \quad H_{\mathbf{k}}=\mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}} \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}}
$$

■ Berry curvature $(\vartheta, \varphi) \longrightarrow\left(k_{x}, k_{y}\right)$:

$$
\boldsymbol{\Omega}(\mathbf{k})=i\left(\left\langle\partial_{k_{x}} u_{\mathbf{k}} \mid \partial_{k_{y}} u_{\mathbf{k}}\right\rangle-\left\langle\partial_{k_{y}} u_{\mathbf{k}} \mid \partial_{k_{x}} u_{\mathbf{k}}\right\rangle\right)
$$

Chern number

■ BZ is a closed surface (2d torus). Gauss-Bonnet-Chern:

$$
\frac{1}{2 \pi} \int_{\mathrm{BZ}} d \mathbf{k} \Omega(\mathbf{k})=C_{1} \in \mathbb{Z}
$$

- Constant under deformations of the Hamiltonian insofar as the gap does not close

■ 2D crystalline material with $C_{1} \neq 0$:

- Prototype of a topological insulator
- Haldane (1988) proved that such a material could exist
- This "simple" kind of topological insulators synthetized since 2013 onwards

Chern number

■ BZ is a closed surface (2d torus). Gauss-Bonnet-Chern:

$$
\frac{1}{2 \pi} \int_{\mathrm{BZ}} d \mathbf{k} \Omega(\mathbf{k})=C_{1} \in \mathbb{Z}
$$

■ Constant under deformations of the Hamiltonian insofar as the gap does not close

- 2D crystalline material with $C_{1} \neq 0$:
- Prototype of a topological insulator
- Haldane (1988) proved that such a material could exist
- This "simple" kind of topological insulators synthetized since 2013 onwards

Outline

1 Geometry and topology entering quantum mechanics
2 What topology is about
3 Topology shows up in electronic structure
4 TKNN invariant (a.k.a. Chern number)
5 Haldanium
6 Topological marker in r space
7 Conclusions

Hexagonal boron nitride (\& graphene)

Topologically trivial: $C_{1}=0$. Why?

Hexagonal boron nitride (\& graphene)

Topologically trivial: $C_{1}=0$. Why?

Symmetry properties
■ Time-reversal symmetry $\rightarrow \boldsymbol{\Omega}(\mathbf{k})=-\boldsymbol{\Omega}(-\mathbf{k})$
$■$ Inversion symmetry $\rightarrow \boldsymbol{\Omega}(\mathbf{k})=\boldsymbol{\Omega}(-\mathbf{k})$

■ Need to introduce "some magnetism"

- Solution: a staggered magnetic field

Hexagonal boron nitride (\& graphene)

Topologically trivial: $C_{1}=0$. Why?

Symmetry properties
■ Time-reversal symmetry $\rightarrow \boldsymbol{\Omega}(\mathbf{k})=-\boldsymbol{\Omega}(-\mathbf{k})$
$■$ Inversion symmetry $\rightarrow \boldsymbol{\Omega}(\mathbf{k})=\boldsymbol{\Omega}(-\mathbf{k})$

■ Need to introduce "some magnetism"
■ Solution: a staggered magnetic field

The "Haldanium" paradigm (F.D.M. Haldane, 1988)

+ staggered B field

Tight-binding parameters:

- 1st-neighbor hopping t_{1}
- staggered onsite $\pm \Delta$
- complex 2nd-neighbor $t_{2} \mathrm{e}^{i \phi}$

Phase diagram

Topological order

■ Ground state wavefunctions differently "knotted" in \mathbf{k} space
■ Topological order very robust
■ C_{1} switched only via a metallic state: "cutting the knot"
■ Displays quantum Hall effect at $\mathbf{B}=0$

Bulk-boundary correspondence

Outline

1 Geometry and topology entering quantum mechanics
2. What topology is about

3 Topology shows up in electronic structure
4 TKNN invariant (a.k.a. Chern number)
5 Haldanium
6 Topological marker in r space
7 Conclusions

Manifesto: k space vs. r space

■ Periodic boundary conditions and \mathbf{k} vectors are a (very useful) creation of our mind: they do not exist in nature.

■ Topological order must be detected even:
 - Inside finite samples (e.g. bounded crystallites)
 - In noncrystalline samples
 ■ In macroscopically inhomogeneous samples (e.g. heterojunctions)

Manifesto: \mathbf{k} space vs. \mathbf{r} space

- Periodic boundary conditions and \mathbf{k} vectors are a (very useful) creation of our mind: they do not exist in nature.

■ Topological order must be detected even:
■ Inside finite samples (e.g. bounded crystallites)

- In noncrystalline samples
- In macroscopically inhomogeneous samples (e.g. heterojunctions)

■ In all such cases, the \mathbf{k} vector does not make much sense

Manifesto: k space vs. r space

■ Is it possible to get rid of \mathbf{k} vectors and to detect instead topological order directly in r space?

Manifesto: k space vs. r space

PHYSICAL REVIEW B 84, 241106(R) (2011)

Mapping topological order in coordinate space

Raffaello Bianco and Raffaele Resta

Our "topological marker"
 R. Bianco and R. Resta, Phys. Rev. B (RC) 84, 241106 (2011)

$■$ We design an operator \mathcal{O}, explicitly given in the Schrödinger representation: $\langle\mathbf{r}| \mathcal{O}\left|\mathbf{r}^{\prime}\right\rangle$

- Our operator is well defined both for unbounded crystals and for bounded samples (e.g. crystallites)
- The diagonal $\langle\mathbf{r}| \mathcal{O}|\mathbf{r}\rangle$ has the meaning of curvature per unit area in \mathbf{r} space
- Its trace per unit volume in any macroscopically homogeneous region of the sample yields C_{1}

Our "topological marker"
 R. Bianco and R. Resta, Phys. Rev. B (RC) 84, 241106 (2011)

■ We design an operator \mathcal{O}, explicitly given in the Schrödinger representation: $\langle\mathbf{r}| \mathcal{O}\left|\mathbf{r}^{\prime}\right\rangle$

- Our operator is well defined both for unbounded crystals and for bounded samples (e.g. crystallites)

■ The diagonal $\langle\mathbf{r}| \mathcal{O}|\mathbf{r}\rangle$ has the meaning of curvature per unit area in \mathbf{r} space
... but fluctuates on a microscopic scale

- Its trace per unit volume in any macroscopically homogeneous region of the sample yields C_{1}

Haldanium flake (OBCs)

Sample of 2550 sites, line with 50 sites

Crystalline Haldanium (normal \& Chern)

Topological marker (top); site occupancy (bottom)

Haldanium alloy (normal \& Chern)

Topological marker (top); site occupancy (bottom)

Haldanium heterojunctions

Topological marker (top); site occupancy (bottom)

Outline

1 Geometry and topology entering quantum mechanics
$\sqrt{2}$ What topology is about
3 Topology shows up in electronic structure
4 TKNN invariant (a.k.a. Chern number)

5 Haldanium

6 Topological marker in r space
7 Conclusions

Conclusions and perspectives

- Topological invariants and topological order Wave function "knotted" in \mathbf{k} space
- Topological invariants are measurable integers Very robust ("topologically protected") Most spectacular: quantum Hall effect
- Topological order without a B field: topological insulators

■ Topological order is (also) a local property of the ground-state wave function: Our simulations

