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In the quantum Hall effect, electrons move relatively freely in the layer between the semi-conduc-
tors and form something called a topological quantum fluid. In the same way as new properties 
often appear when many particles come together, electrons in the topological quantum fluid also 
display surprising characteristics. Just as it can’t be ascertained whether there is a hole in a coffee cup 
by only looking at a small part of it, it is impossible to determine whether electrons have formed a 
topological quantum fluid if you only observe what is happening to some of them. However, con-
ductance describes the electrons’ collective motion and, because of topology, it varies in steps; it is 
quantised. Another characteristic of the topological quantum fluid is that its borders have unusual 
properties. These were predicted by the theory and were later confirmed experimentally. 

Another milestone occurred in 1988, when Duncan Haldane discovered that topological quantum 
fluids, like the one in the quantum Hall effect, can form in thin semiconductor layers even when 
there is no magnetic field. He said he’d never dreamed of his theoretical model being realised experi-
mentally but, as recently as 2014, this model was validated in an experiment using atoms that were 
cooled to almost absolute zero. 

New topological materials in the pipeline
In much earlier work, from 1982, Duncan Haldane made a prediction that amazed even the experts in 
the field. In theoretical studies of chains of magnetic atoms that occur in some materials, he discove-
red that the chains had fundamentally different properties depending on the character of the atomic 
magnets. In quantum physics there are two types of atomic magnets, odd and even. Haldane demon-
strated that a chain formed of even magnets is topological, while a chain of odd magnets is not. Like 
the topological quantum fluid, it is not possible to determine whether an atomic chain is topological 
or not by simply investigating a small part of it. And, just as in the case of the quantum fluid, the 
topological properties reveal themselves at the edges. Here, this is at the ends of the chain, because 
the quantum property known as spin halves at the ends of a topological chain. 

Initially, no one believed Haldane’s reasoning about atomic chains; researchers were convinced that 
they already completely understood them. But it turned out that Haldane had discovered the first 
example of a new type of topological material, which is now a lively field of research in condensed 
matter physics.

POW

POW

0 holes

1 hole

2 holes

3 holes
electrical
conductance

Fig 3. Topology. This branch of mathematics is interested in properties that change step-wise, like the number of holes in the above 
objects. Topology was the key to the Nobel Laureates’ discoveries, and it explains why electrical conductivity inside thin layers chan-
ges in integer steps. 
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Archetypes

1954 Yang-Mills gauge theory (relativistic QM)

Geometrical meaning understood only in the 1970s, after
C.N. Yang interacted with mathematicians
(Singer, Atiyah, Chern...)

1959 Aharonov-Bohm experiment (nonrelativistic QM)

Geometrical meaning understood only after the famous
paper by Michael Berry (1984)

1982 From geometry to topology: TKNN
(Thouless, Kohmoto, Nightingale, and den Nijs)
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Aharonov-Bohm, 1959

Figure from Feynman, Vol. 2 (1963)
Main message:

Classical particles: only the fields may act on them
Quantum particles: the potentials act on them even when
no field is present
Why such difference?
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Berry phase, 1984

Very simple concept, nonetheless missed by the founding
fathers of QM in the 1920s and 1940s
Nowadays in any modern elementary QM textbook

After Berry, we have two kinds of observables:
Expectation values of some operator
Gauge-invariant phases of the wavefunction
(no operator whatsoever)

Main message:
In QM anything gauge-invariant is in principle observable!
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Topology

Branch of mathematics that describes properties which
remain unchanged under smooth deformations

Such properties are often labeled by integer numbers:
topological invariants

Founding concepts: continuity and connectivity, open &
closed sets, neighborhood......

Differentiability or even a metric not needed
(although most welcome!)
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Archimedes
Eukleides (Euclid)

Descartes
Fermat
Pascal

Newton
Leibniz

Euler
Lagrange

Laplace
Gauss

Ada Byron, Lady
Lovelace
Riemann

Cantor
 

Authors Pictures
Leonardo Da Vinci

Shop
Composers Posters
Composers T shirts
Famous Physicists

 

 

 

Math Mug:
Certified Math Geek.

 

Math Mug (set theory):
If you consider the set of all sets that have
never been considered ....

 

 

Math Mug - Topology
To a Topologist This is a Doughnut

 

 

Math Mug:
Real Life is a Special Case
(black background)

 

Topological Classification
Objects with holes can be classified topologically as
follows:

No holes Genus 0

One hole Genus 1

Two holes Genus 2

Three holes Genus 3

 

EXAMPLES

The above shapes are topologically equivalent
and are of Genus 0

Properties of Space

http://cosmology.uwinnipeg.ca/Cosmology/Properties-of-Space.htm (7 of 11) [03/01/2002 7:23:17 PM]

Topological invariant: genus (=1 here)
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Gaussian curvature: sphere

In a local set of coordinates in the
tangent plane

z = R −
√

R2 − x2 − y2 ≃ x2 + y2

2R

Hessian H =

(
1/R 0

0 1/R

)

Gaussian curvature K = det H =
1

R2
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Positive and negative curvature

2/3/12 4:27 PMBob Gardner's "Relativity and Black Holes" Special Relativity
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>
For example, a plane tangent to a sphere lies entirely on one side of the sphere, and so a sphere is of positive
curvature. In fact, a sphere of radius r is of curvature 1/r2.

A saddle shaped surface (or more precisely, a hyperbolic paraboloid) is of negative curvature. A tangent
plane lies on both sides of the surface. Here, the point of tangency is red and the points of intersection are
blue. Pringles potato chips are familiar examples of sections of a hyperbolic paraboloid.
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A cylinder is of zero curvature since a tangent plane lies on one side of the cylinder and the points of
intersection (here in blue) are a line containing the point of tangency. Also, of course, a plane is of zero
curvature.

If two surfaces have the same curvature, we can smoothly transform one into the other without changing
distances (the transformation is called an isometry). For example, a sheet of paper (used here to represent a
curvature zero plane) can be rolled up to form a cylinder (which also has zero curvature). However, we
cannot role the paper smoothly into a sphere (which is of positive curvature). For example, if we try to
giftwrap a basketball, then the paper will overlap itself and have to be crumpled. We also cannot role the
paper smoothly over a saddle shaped surface (which is of negative curvature) since this would require ripping
the paper.

The curvature of a surface is also related to the geometry of the surface.

Smooth surface, local set of coordinates on the tangent plane

K = det

(
∂2z
∂x2

∂2z
∂x∂y

∂2z
∂y∂x

∂2z
∂y2

)
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Twist angle vs. Gaussian curvature

Gaussian curvature of the
spherical surface K = 1/R2

a curved space but not in a flat space may lead to the idea of using it as a way to
measure curvature. We cannot prove it mathematically here, but it turns out that if we
choose a loop that is small enough around a point in a curved space, the amount of
change in the direction of a vector that is parallel transported along it is proportional
to the area enclosed by the loop. So, the ratio between the area of the loop and the
amount of change in the direction of the vector (whatever way we chose to measure
it) can be used as a measure to the curvature of the surface that includes the loop.
Actually we define curvature by the value of this ratio.
 

 
Riemann Curvature Tensor
 
Riemann tensor is a rank (1,3) tensor that describes the curvature in all directions at a
given point in space. It takes 3 vectors and returns a single vector. The vectors that are
fed to the tensor should be very small and have a length ε. If we use the first two
vectors to form a tiny parallelogram and we parallel transport the third vector around
this parallelogram, the vector that the function returns is approximately the vector
difference between the original vector and the vector after the parallel transport.
Mathematically it can be written like this:
 

 
 
Where U and V are the vectors of length ε that form the parallelogram, R is Riemann
tensor, W is the third vector before the parallel transport and W' is the vector after the
parallel transport. Note that ε³ get smaller much faster then ε² as we reduce the value
of ε, so that for any required precision we can choose ε small enough so that the terms
of ε³ will be negligible and we can write:
 

 
Using coordinates it will look like this:
 

 

Angular mismatch for parallel transport:

γ =

∫
dσ K

Equivalently: sum of the three angles:

α1 + α2 + α3 = π + γ = π +

∫
dσ K
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What about integrating over a closed surface?
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allel transport around the small loop enclosing the area
dA. The left side of the Gauss–Bonnet equation is geo-
metric and not quantized a priori. But the right side is
manifestly quantized; the integer g is the number of han-
dles characterizing the topology of S. (For the torus in fig-
ure 4, g = 1.) So, if we change K arbitrarily by denting the
surface—so long as we do not punch through new han-
dles—the quantized right side of equation 3 does not
change. 

The Gauss–Bonnet formula has a well-known modern
generalization, due to Shiing-shen Chern. The Gauss-
Bonnet-Chern formula applies not only to the geometry of
surfaces but also to the geometry of the eigenstates para-
meterized by F and q. It looks exactly like equation 3, ex-
cept that K is now the adiabatic curvature of equation 1,
and the surface S is a torus parameterized by the two
fluxes F and q. The right-hand side of the Chern’s gener-
alization of equation 3 is still an integer. Indeed, it is the
so-called Chern number. But there is a difference: It is not
necessarily an even integer, and g can no longer be inter-
preted as a tally of handles. 

But if the Chern number doesn’t count handles, why
does it have to be an integer? One can see why by consid-
ering the failure of parallel transport around the little loop
in figure 4. The loop can be thought of as the boundary of
the small red “inside” area, but also as the boundary of the
“outside” area that makes up the rest of the toroidal sur-
face. The phase mismatch of parallel transport can then
be calculated as an integral of the curvature either over
the inside area or the outside area. And the two integrals
must agree up to an integral multiple of 2p. The difference
between them, divided by 2p, is the Chern number. As one
shrinks the small red area to zero, one readily sees that
the Chern number is given by the integral in equation 3.

The Chern number is topological in the sense that it
is invariant under small deformations of the Hamiltonian.
Small changes of the Hamiltonian result in small changes
of the adiabatic curvature and therefore, one might think,
in a small change in the Chern number. But because the
Chern number is an integer, it can’t change at all if it has
to change continuously. We conclude, therefore, that a
graph of the Chern number must have plateaus.

But then, how does the Chern number change from one
plateau to the next? Large deformations of the Hamiltonian
can cause the ground state to cross over other eigenstates.
When such a “level crossing” happens in a quantum Hall sys-
tem, the adiabatic curvature K diverges and the Chern num-
ber is no longer well defined. Transitions between Chern-
number plateaus take place at level crossings.

Returning to Laughlin’s argument, we now see that, in
fundamental units, the Hall conductance and therefore the
average charge transport in Laughlin’s gedanken experi-
ment are Chern numbers. That explains why the trans-
ported charge, averaged over many pump cycles, is quan-
tized. And thus it explains the surprisingly precise plateau
structure discovered in 1980 by von Klitzing.

The Hofstadter model
The glory of Chern numbers in the Hall effect emerges
from a theoretical model investigated in 1976 by Douglas
Hofstadter,9 three years before the publication of his
widely read book Gödel, Escher, Bach: An Eternal Golden
Braid. The model, which was first analyzed in the 1950s
by Rudolph Peierls and his student P. G. Harper, describes
independent electrons on a 2D lattice, acted on by a ho-
mogeneous magnetic field. The model is interesting for
several reasons. First, its rich conjectural scheme was ex-
perimentally realized in 2001 by Christian Albrecht, von
Klitzing, and coworkers in a 2D electron gas in a super-
lattice potential.10 The experiment verified the remarkably
detailed Hofstadter-model predictions of David Thouless
and coworkers.4 Second, the only known way of computing
the Hall conductance in Hofstadter’s model is with Chern
numbers. Third, the model provides a dazzling structure
built of Chern numbers.

The thermodynamic properties of the 2D electron gas
in Hofstadter’s model are determined by three parameters:
the magnetic flux, the temperature, and the chemical po-
tential, which fixes the electron density. The most inter-
esting case, shown in figure 5, occurs at zero temperature.

The figure, sometimes called Hofstadter’s butterfly, is
the model’s phase diagram. It represents all the thermo-
dynamic phases of the 2D electron gas that emerge as one
varies the chemical potential and the magnetic field. Un-
like the phase diagrams of simple thermodynamic systems
that have only a few phases—say liquid, solid, and gas—
the Hofstadter model has infinitely many different phases.
Each phase is characterized by its integral Hall conduc-
tance, and all integer values are allowed. These different
Chern integers are represented in the figure by different
colors. The figure was made using the equations of Thou-
less and company.4

How is it that something as simple as the Hofstadter
model9 turns out to generate such a magnificently complex
structure? The cause is, as is so often the case in physics,
the phenomenon of “frustration.” Frustration occurs here
because two different area scales are in competition. One
characteristic area is the unit cell of the superlattice in Al-
brecht’s experiment. The other area scale is F0 /B, associ-
ated with the unit of quantum flux.

The character of the problem changes according to
whether or not the two areas are commensurable. We say
they are incommensurable when their ratio is an irrational

http://www.physicstoday.org August 2003    Physics Today 41

Figure 4. The Gauss–Bonnet formula (equation 3) is illus-
trated here by a toroidal surface with one handle. The
local curvature K is positive on those portions of the sur-
face that resemble a sphere and negative on those, near
the hole, that resemble a saddle. Because g, the number
of handles, equals one, the integral of the curvature over
the entire surface vanishes. One can make 
Shiing-shen Chern’s quantum generalization of the
Gauss–Bonnet formula plausible by considering the 
angular mismatch of parallel transport after a circuit
around the small red patch in the figure.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  140.105.31.181 On: Tue, 10
May 2016 17:02:44
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Gauss-Bonnet theorem (1848)

Over a smooth closed surface:

1
2π

∫

S
dσ K = 2(1 − g)

Genus g integer: counts the number of “handles”
Same g for homeomorphic surfaces
(continuous stretching and bending into a new shape)
Differentiability not needed
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Here comes the crazy part. Solving the Poincaré Conjecture comes with a prize

of... $1,000,000! (Put your pinky finger to your mouth like Dr. Evil if you feel so

inclined.)

Grisha doesn't want it.

Separate from that cash, Grisha has been awarded the Fields Medal, equivalent

to the Nobel Prize in math, which also comes with a nice clump of cash. (There

is no Nobel Prize in math.)

Grisha doesn't want it.

Maybe his mama could talk some sense into this boy. But taking a look at this

Rasputin lookin' mofo, if she could talk sense into him, she'd probably start by

not dressin' him funny anymore.

Matty Boy, can you 'splain the Poincaré Conjecture to your gentle readers,

some of whom have serious issues with the math?

Let's give it a shot.

In the picture above, we have three different objects, a sphere, a torus and a

Klein bottle. We are going to consider only the surface of each, which we can

think of as a two dimensional thing in a three dimensional world.

The sphere is the easiest of these. It splits the three dimensional world into

three parts: the inside of the sphere, (known as a ball), the skin of the sphere

and the outside.

A torus is the next easiest. There is an inside, the skin and the outside, but

there's the "hole in the middle", which makes a torus different from a sphere in

mathematically important ways.

Then we have the physically impossible model that is the Klein bottle. It can be
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Integer quantum Hall effect

VOLUME 45, NUMBER 6 PHYSICAL REVIEW LETTERS 11 AUGUST 1/80

invalidate both the relation N =Nz and Eq. (4).
However, the experimental results strongly sug-
gest that such carriers do not invalidate Eq. (4).
At present there is both theoretical and experi-
mental investigation of this type of localiza-
tion.""" Ando' has suggested that the electrons
in impurity bands, arising from short range scat-
terers, do not contribute to the Hall current;
whereas the electrons in the Landau level give
rise to the same Hall current as that obtained
when all the electrons are in the level and can
move freely. Clearly this process must be oc-
curing but its range of validity must be carefully
examined as an accompaniment to highly accurate
measurements of Hall resistance.
For high-precision measurements we used a

normal resistance R, in series with the device.
The voltage drop, U„across R„and the voltages
UH and Upp across and along the device was meas-
ured with a high impedance voltmeter (R &2 x10'0

400

200.

0). The resistance R, was calibrated by the Phys-
ikalisch Technische Bundesanstalt, Braunschweig,
and had a value of Rp 9999.69 0 at a temperature
of 20'C. A typical result of the measured Hall
resistance R„=UH /I =UHR, /U„and the resis-
tance, R» =U»R, /U„between the potential
probes of the device is shown in Fig. 2 (J3 =13 T,
T =1.8 K). The minimum in cr„„atV, =23.6 P
corresponds to the minimum at V~ =8.7 V in Fig.
1, because the thicknesses of the gate oxides of
these two samples differ by a factor of 3.6. Our
experimental arrangement was not sensitive
enough to measure a value of R» of less than 0.1
0 which was found in the gate-voltage region
23.40 V& V &23.80 V. The Hall resistance in this
gate voltage region had a value of 6453.3+ 0.1 Q.
This inaccuracy of + 0.1 0 was due to the limited
sensitivity of the voltmeter. We would like to
mention that most of the samples, especially de-
vices with a small length-to-width ratio, showed
a minimum in the Hall voltage as a function of V
at gate voltage close to the left side of the plateau.
In Fig. 2, this minimum is relatively shallow and
has a value of 6452.87 0 at V~ =23.30 V.
In order to demonstrate the insensitivity of the

Hall resistance on the geometry of the device,
measurements on two samples with a length-to-
width ratio of I /W=0. 65 and I/W=25, respective-
ly, are plotted in Fig. 3. The gate-voltage scale
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FIG. 2. Hall resistance RH, and device resistance,
Rpp, between the potential probes as a function of the
gate voltage ~~ in a region of gate voltage correspond-
ing to a fully occupied, lowest (n =0) Landau level. The
plateau in RH has a value of 6453.3+ 0.1 Q. The geom-
etry of the device was I =400 pm, 8'=50 pm, and L»
=130 pm; B=13T.

6450
0.98 0.99 1.00 101 102

= gate voltage Vg/r'el. units

FIG. 3. Hall resistance RH for two samples with dif-
ferent geometry in a gate-voltage region V~ where the
n =0 Landau level is fully occupied. The recommended
value h/4e' is given as 6453.204 &.

496

Figure from von Klitzing et al. (1980).

Gate voltage Vg was supposed to
control the carrier density.

Plateau flat to five decimal figures

Natural resistance unit:
1 klitzing = h/e2 = 25812.807557(18) ohm.
This experiment: RH = klitzing / 4
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More recent experiments

GaAs-GaAlAs heterojunction, at 30mK

Plateaus accurate to nine decimal figures
In the plateau regions ρxx = 0 and σxx = 0:
“quantum Hall insulator”
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Landau levels (flat potential)

Number of states in each Landau level: B×area
hc/e

σxx = 0 seems to require very fine tuning!
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Continuous “deformation” of the wave function

Topological invariant:
Quantity that does not change under continuous
deformation

From a clean sample (flat substrate potential)
to a dirty sample (disordered substrate potential)
σxy is some “genus” of the ground-state wavefunction
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Quantum Mechanics: Berry curvature

Parametric Hamiltonian
on a closed surface (a torus) :
H(ϑ,ϕ) = H(ϑ+ 2π,ϕ) = H(ϑ,ϕ+ 2π)

Ground nondegenerate eigenstate |ψ0(ϑ,ϕ)⟩

Data for a torusData for a torus

What data fully 
specify homogeneous

magnetic field on torus?

Field, ,two fundamental loops and two fluxes

Physical information (observable)

Berry curvature:

Ω(ϑ,ϕ) = i
(
⟨ ∂
∂ϑ
ψ0|

∂

∂ϕ
ψ0⟩ − ⟨ ∂

∂ϕ
ψ0|

∂

∂ϑ
ψ0⟩
)

Chern theorem (1944):

1
2π

∫ 2π

0
dϑ
∫ 2π

0
dϕ Ω(ϑ,ϕ) = C1 ∈ Z
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Compare Gauss-Bonnet with Chern
Data for a torusData for a torus

What data fully 
specify homogeneous

magnetic field on torus?

Field, ,two fundamental loops and two fluxes

Physical information (observable)

Gauss-Bonnet theorem:

1
2π

∫

S
dσ K = 2(1 − g), g = 0, 1, 2, . . .

Gauss-Bonnet-Chern theorem:

1
2π

∫

S
dσ Ω = C1, C1 ∈ Z

Very robust under deformations of H(ϑ,ϕ):
C1 stays constant insofar as the ground state stays
nondegenerate
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Back to the IQHE

TKNN:
Start from the standard Kubo formula for conductivity σxy

Then transform into σxy = h
e2 C1 = C1 klitzing−1

4(5) THE NOBEL PRIZE IN PHYSICS 2016 � THE ROYAL SWEDISH ACADEMY OF SCIENCES � HTTP://KVA.SE

In the quantum Hall effect, electrons move relatively freely in the layer between the semi-conduc-
tors and form something called a topological quantum fluid. In the same way as new properties 
often appear when many particles come together, electrons in the topological quantum fluid also 
display surprising characteristics. Just as it can’t be ascertained whether there is a hole in a coffee cup 
by only looking at a small part of it, it is impossible to determine whether electrons have formed a 
topological quantum fluid if you only observe what is happening to some of them. However, con-
ductance describes the electrons’ collective motion and, because of topology, it varies in steps; it is 
quantised. Another characteristic of the topological quantum fluid is that its borders have unusual 
properties. These were predicted by the theory and were later confirmed experimentally. 

Another milestone occurred in 1988, when Duncan Haldane discovered that topological quantum 
fluids, like the one in the quantum Hall effect, can form in thin semiconductor layers even when 
there is no magnetic field. He said he’d never dreamed of his theoretical model being realised experi-
mentally but, as recently as 2014, this model was validated in an experiment using atoms that were 
cooled to almost absolute zero. 

New topological materials in the pipeline
In much earlier work, from 1982, Duncan Haldane made a prediction that amazed even the experts in 
the field. In theoretical studies of chains of magnetic atoms that occur in some materials, he discove-
red that the chains had fundamentally different properties depending on the character of the atomic 
magnets. In quantum physics there are two types of atomic magnets, odd and even. Haldane demon-
strated that a chain formed of even magnets is topological, while a chain of odd magnets is not. Like 
the topological quantum fluid, it is not possible to determine whether an atomic chain is topological 
or not by simply investigating a small part of it. And, just as in the case of the quantum fluid, the 
topological properties reveal themselves at the edges. Here, this is at the ends of the chain, because 
the quantum property known as spin halves at the ends of a topological chain. 

Initially, no one believed Haldane’s reasoning about atomic chains; researchers were convinced that 
they already completely understood them. But it turned out that Haldane had discovered the first 
example of a new type of topological material, which is now a lively field of research in condensed 
matter physics.

POW

POW

0 holes

1 hole

2 holes

3 holes
electrical
conductance

Fig 3. Topology. This branch of mathematics is interested in properties that change step-wise, like the number of holes in the above 
objects. Topology was the key to the Nobel Laureates’ discoveries, and it explains why electrical conductivity inside thin layers chan-
ges in integer steps. 

Figure downloaded from http://www.nobelprize.org
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Robust insofar as the system remains insulating
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Weirdness of macroscopic B fields

The Hamiltonian cannot be lattice periodical
Besides IQHE, other weird phenomena were known
For instance, the Hofstadter butterfly (1976):

ii

I shall also present an open problem. Namely, how do these diagrams
change if one replaces the magnetic induction B by the magnetic field H
as the thermodynamic coordinate.

2 Some history

That the Hall conductance took different signs in different metals was an
embarrassment to Sommerfeld theory. Since charge is carried by the elec-
trons one sign was predicted. The wrong sign was called the anomalous Hall
effect and was explained by R. Peierls [5] who showed that the periodicity
of the electron dispersion ≤(k) plus the Pauli principle allow for either sign,
depending on µ. This subsequently lead to the important concept of holes
as charge carriers—a term not used by Peierls in his original work.

The electron-hole anti-symmetry of the Hall conductance is seen in Fig. 1
where cold and warm colors are interchanged upon reflection about the
vertical axis. However, the figure is much more complicated than what
Peierls had in mind.

FIGURE 1. Colored Hofstadter butterfly for Bloch electrons in weak magnetic
field. The horizontal axis is the chemical potential; the vertical axis is the mag-
netic flux through the unit cell. The diagram is periodic in the flux and one period
is shown. It admits a thermodynamic interpretation of a phase diagram.

Mark Azbel [2] realized that the Schrödinger equation in a periodic po-

Can a nontrivial topology exist in absence of a B field?
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FIGURE 1. Colored Hofstadter butterfly for Bloch electrons in weak magnetic
field. The horizontal axis is the chemical potential; the vertical axis is the mag-
netic flux through the unit cell. The diagram is periodic in the flux and one period
is shown. It admits a thermodynamic interpretation of a phase diagram.

Mark Azbel [2] realized that the Schrödinger equation in a periodic po-

Can a nontrivial topology exist in absence of a B field?
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Bloch orbitals

Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons

H|ψk⟩ = εk|ψk⟩
Hk|uk⟩ = εk|uk⟩ |uk⟩ = e−ik·r|ψk⟩ Hk = e−ik·rHeik·r

Berry curvature (ϑ,ϕ) −→ (kx , ky ):

Ω(k) = i ( ⟨∂kx uk|∂ky uk⟩ − ⟨∂ky uk|∂kx uk⟩ )
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Chern number

BZ is a closed surface (2d torus). Gauss-Bonnet-Chern:

1
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∫

BZ
dk Ω(k) = C1 ∈ Z

Constant under deformations of the Hamiltonian
insofar as the gap does not close

2D crystalline material with C1 ̸= 0:
Prototype of a topological insulator
Haldane (1988) proved that such a material could exist
This “simple” kind of topological insulators synthetized
since 2013 onwards
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ultrathin hexagonal boron nitride (h-BN)
films on metals

Willi Auwärter, Matthias Muntwiler, Martina Corso, Thomas Greber
and Jürg Osterwalder

Physics Institute, University of Zurich, 12/12/03

Boron nitrides represent a class of materials with promising properties
[1]. They are thermally stable, chemically inert and insulating. Pairs of
boron and nitrogen atoms are isoelectronic to pairs of carbon atoms.
Therefore, boron nitrides show a similar structural variety as carbon
solids, including graphitic hexagonal
boron nitride (h-BN) and diamond-like
cubic boron nitride (c-BN) [2], onion-
like fullerenes [3], and multi- and
single-wall nanotubes [4,5].
Differences arise due to the
reluctance, in boron nitrides, to form B-
B or N-N bonds which excludes
pentagon formation and thus the synthesis of simple fullerenes
analogous to e.g. C60. In our work we concentrate on hexagonal boron
nitride, that is often called "white graphite" due to its color and the layer
structure similar to graphite. The combination of being an electric
insulator and a good thermal conductor that is stable up to high
temperatures and the easy machinability makes h-BN an interesting
material for many technical applications. The photograph below shows
two boron nitride blocks. Weakly
physisorbed layers of h-BN on metal
surfaces have been studied for about a
decade [6]. Well-ordered films can be
grown by thermal decomposition of
borazine (HBNH)3 on transition metal

surfaces [7]. In most cases studied so
far the film growth was observed to be self-limiting at one monolayer;
beyond that the sticking coefficient of the precursor molecule becomes
exceedingly small. Most of the work has been concentrated on the

introduction

h-BN on Nickel  

h-BN on Rhodium  

Topologically trivial: C1 = 0.
Why?
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Topologically trivial: C1 = 0.
Why?

Symmetry properties
Time-reversal symmetry → Ω(k) = −Ω(−k)

Inversion symmetry → Ω(k) = Ω(−k)

J.N. Fuchs et al.: Topological Berry phase and semiclassical quantization of cyclotron orbits 357

(a)

(b)

Fig. 1. Berry curvature Ω (in units of a2) in the conduction
band of boron nitride as a function of the Bloch wavevector
(kx, ky) (in units of 1/a) in the entire Brillouin zone for ∆/t =

0.1. The lattice vectors have been taken as a1 =
√

3
2 aex+ 3

2aey ,

a2 = −
√

3
2 aex + 3

2aey. (a) Three dimensional plot (kx, ky , Ω).
(b) Contours of iso-curvature in the Brillouin zone.

symmetry (Ω(k + G) = Ω(k)) of the triangular Bravais
lattice.

The orbital magnetic moment is easily obtained from
M = eε0Ω and is shown in Figure 2.

Because of time reversal symmetry, the curvature sat-
isfies Ω(−k) = −Ω(k) and its integral over the entire BZ
vanishes. As inversion symmetry is absent Ω(−k) ̸= Ω(k).

The Berry phase for a cyclotron orbit C of constant en-
ergy ε0 is Γ (C) = πWC [1− ∆

|ε0| ] where WC ≡ −α
∮

C dθ/2π
is the winding number, which is ±1 when encircling a val-
ley (because of a vortex in θ) and 0 when the orbit is
around the Γ point, see Figure 3.

(a)

(b)

Fig. 2. Orbital magnetic moment M (in units of e t a2/!) in
the conduction band of boron nitride as a function of the Bloch
wavevector (kx, ky) (in units of 1/a) in the entire Brillouin
zone for ∆/t = 0.1. (a) Three dimensional plot (kx, ky,M).
(b) Contours of iso-M in the Brillouin zone.

A saddle point in the energy dispersion at |ε0| =√
∆2 + t2 separates the cyclotron orbits which encircle the

two valleys from the cyclotron orbit which encircle the Γ
point in the BZ. As a consequence,

Γ (C) = − αξπ[1 −∆/|ε0|] if ∆ ≤ |ε0| <
√
∆2 + t2

(i.e. WC = −αξ = ±1)

= 0 if
√
∆2 + t2 < |ε0| ≤

√
∆2 + (3t)2

(i.e. WC = 0). (38)

We checked this simple expression for the Berry phase
along a cyclotron orbit numerically by directly comput-
ing the integral of the curvature in k space over the area
encircled by the cyclotron orbit.

Ω(k)

Need to introduce “some magnetism”
Solution: a staggered magnetic field
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A saddle point in the energy dispersion at |ε0| =√
∆2 + t2 separates the cyclotron orbits which encircle the

two valleys from the cyclotron orbit which encircle the Γ
point in the BZ. As a consequence,

Γ (C) = − αξπ[1 −∆/|ε0|] if ∆ ≤ |ε0| <
√
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(i.e. WC = −αξ = ±1)

= 0 if
√
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√
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(i.e. WC = 0). (38)

We checked this simple expression for the Berry phase
along a cyclotron orbit numerically by directly comput-
ing the integral of the curvature in k space over the area
encircled by the cyclotron orbit.

Ω(k)

Need to introduce “some magnetism”
Solution: a staggered magnetic field
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+ staggered B field

f!!"" =
1

1 + exp#!" − !"/#$
. !54"

In all subsequent calculations, we set #=0.05 a.u., which
provides good convergence.

We compute the orbital magnetization as a function of the
chemical potential ! with $ fixed at % /3. Using the same
procedure as in the previous section, we compute the orbital
magnetization by the means of the heuristic k-space formula
!48" and we compare it to the extrapolated value from finite
samples, from L=8 !289 sites" to L=16 !1089 sites". We
verified that a k-point mesh of 100&100 gives well con-
verged results for the bulk formula !48".

The orbital magnetization as a function of the chemical
potential for $=% /3 is shown in Fig. 5. The resulting values
agree to a good level, and provide solid numerical evidence
in favor of Eq. !48", whose analytical proof is still lacking.
The orbital magnetization initially increases as the filling of
the lowest band increases, and rises to a maximum at a !
value of about −4.1. Then, as the filling increases, the first
!lowest" band crosses the second band and the orbital mag-
netization decreases, meaning that the two bands carry
opposite-circulating currents giving rise to opposite contribu-
tions to the orbital magnetization. The orbital magnetization
remains constant when ! is scanned through the insulating
gap. Upon further increase of the chemical potential, the or-
bital magnetization shows a symmetrical behavior as a func-
tion of !, the two upper bands having equal but opposite
dispersion with respect to the two lowest bands !see Fig. 3".

C. Chern insulating case

In order to check the validity of our heuristic Eq. !48" for
a Chern insulator, we switch to the Haldane model
Hamiltonian11 that we used in a previous paper7 to address
the C=0 insulating case. In fact, depending on the parameter
choice, the Chern number C within the model can be either
zero or nonzero !actually, ±1".

The Haldane model is comprised of a honeycomb lattice
with two tight-binding sites per cell with site energies ±',
real first-neighbor hoppings t1, and complex second-neighbor
hoppings t2e±i(, as shown in Fig. 6. The resulting Hamil-

tonian breaks TR symmetry and was proposed !for C= ±1"
as a realization of the quantum Hall effect in the absence of
a macroscopic magnetic field. Within this two-band model,
one deals with insulators by taking the lowest band as occu-
pied.

In our previous paper7 we restricted ourselves to C=0 to
demonstrate the validity of Eq. !48", which was also analyti-
cally proved. In the present work we address the C!0 insu-
lating case, where instead we have no proof of Eq. !48" yet.
We are thus performing computer experiments in order to
explore uncharted territory.

Following the notation of Ref. 11, we choose the param-
eters '=1, t1=1, and %t2%=1/3. As a function of the flux
parameter $, this system undergoes a transition from zero
Chern number to %C%=1 when %sin $%)1/&3.

First we checked the validity of Eq. !48" in the Chern
insulating case by treating the lowest band as occupied. We
computed the orbital magnetization as a function of $ by Eq.
!48" at a fixed ! value, and we compared it to the magneti-
zation of finite samples cut from the bulk. For the periodic
system, we fix ! in the middle of the gap; for consistency,
the finite-size calculations are performed at the same !
value, using the Fermi-Dirac distribution of Eq. !54". The
finite systems have therefore fractional orbital occupancy
and a noninteger number of electrons. The biggest sample
size was made up of 20&20 unit cells !800 sites". The com-
parison between the finite-size extrapolations and the dis-
cretized k-space formula is displayed in Fig. 7. This heuris-
tically demonstrates the validity of our main results, Eqs.
!46" and !48", in the Chern-insulating case.

Next, we checked the validity of Eq. !48" for the most
general case, following the transition from the metallic phase
to the Chern insulating phase as a function of the chemical
potential !. To this aim we keep the model Hamiltonian
fixed, choosing $=0.7%; for ! in the gap this yields a Chern
insulator. The behavior of the magnetization while ! varies
from the lowest-band region, to the gap region, and then to
the highest-band region is displayed in Fig. 8, as obtained
from both the finite-size extrapolations and the discretized
k-space formula. This shows once more the validity of our
heuristic formula. Also notice that in the gap region the mag-
netization is perfectly linear in !, the slope being determined
by the lowest-band Chern number according to Eq. !49".

FIG. 5. Orbital magnetization of the square-lattice model as a
function of the chemical potential ! for $=% /3. The shaded areas
correspond to the two groups of bands. Open circles: extrapolation
from finite-size samples. Solid line: discretized k-space formula
!48".

FIG. 6. Four unit cells of the Haldane model. Filled !open"
circles denote sites with E0=−' !+'". Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei$. Arrows indicate sign of the phase $ for second-
neighbor hopping.

CERESOLI et al. PHYSICAL REVIEW B 74, 024408 !2006"

024408-10

Tight-binding parameters:
1st-neighbor hopping t1
staggered onsite ±∆

complex 2nd-neighbor t2eiφ

approached, the gap at K gets smaller and smaller. Finally,
exactly at !! / t2"cr the bands touch at K in such a way that the
dispersion relation is linear. Such points are also referred to
as Dirac points. When going further into the Chern-insulator
region, the bands separate again. Note that our specific
choice of t1=1 and t2=1/3 prevents the bands from overlap-
ping. If ! and t2 sin " are both chosen to be zero, two Dirac
points form at K and K! and the Haldane model then be-
comes an appropriate model for a graphene sheet.20

In the normal-insulator region of the Haldane model the
Chern number of each band is zero, so that the total Chern
number !the sum of the Chern numbers of the upper and
lower bands" is obviously also zero. When the phase bound-
ary is crossed, the Chern numbers of the upper and lower
bands become ±1, but their sum still remains zero. The clo-
sure and reopening of the gap as the NI/CI boundary is
crossed corresponds to the “donation” of a Chern unit from
one band to another through the temporarily formed Dirac
point. In the present case, the total Chern number must al-
ways remain zero because the model, having a tight-binding
form, assumes Wannier representability of the overall band
space and a nonzero Chern number is inconsistent with such
an assumption. More generally, the total Chern number of a
group of bands should not change when a gap closure and

reopening occurs among the bands of the group, as long as
the gaps between this group and any lower or higher bands
remains open.

It is possible to argue on very general grounds that a finite
sample cut from a Chern insulator must have conductive
channels, otherwise known as chiral edge states, that circu-
late around the perimeter of the sample21 in much the same
way as for the quantum Hall effect.22,23 It is therefore of
interest to investigate the electronic structure of the Haldane
model from the point of view of the surface band structure.
We consider a sample that is finite in the b3 direction !spe-
cifically, 30 cells wide" and has periodic boundary conditions
along the b2 direction #the bi are defined above Eq. !4"$; its
states can be labeled by a wave vector ky running from −# /a
to +# /a, where a is the repeat unit in the y direction. The
energy eigenvalues are plotted versus ky for several values of
! / t2 in Fig. 4. At first sight, the surface band structure shows
qualitatively the same information as the bulk band structure
in Fig. 3. For ! / t2=6, the valence and conduction bands are
separated by a finite gap. At the Chern transition a Dirac
point forms, showing the characteristic linear dispersion ex-
pected around such a point. However, when we go deeper
into the Chern insulator, the surface band structure reveals a
new behavior: one surface band now crosses from the lower
manifold to the upper one with increasing ky, and another
crosses in the opposite direction. Further inspection shows
that the upgoing and downgoing states are localized to the
right and left surfaces of the strip, respectively. Thus, if the
Fermi level lies in the bulk gap, there will be metallic states
with Fermi velocities parallel to the surfaces and with oppo-
site orientation—i.e., a chiral !counterclockwise" circulation
of edge states around the perimeter of the sample, as ex-
pected.
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FIG. 2. Chern number of the bottom band of the Haldane model
as a function of the parameters " and ! / t2 !t1=1, t2=1/3". The
vertical line shows the range of parameters that we have chosen for
all our calculations.
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FIG. 3. Band structure of the Haldane model along some high-
symmetry lines for several values of ! / t2 along the path marked in
Fig. 2. The inset shows a magnification of the bands at K. Note that
at !! / t2"cr the dispersion is linear.
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FIG. 4. Energy vs wave vector ky for the Haldane model in a
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chiral edge states are visible.
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symmetry as an applied magnetic field would), in simplified models 
introduced in around 2003 it can lead to a quantum spin Hall effect, 
in which electrons with opposite spin angular momentum (commonly 
called spin up and spin down) move in opposite directions around the 
edge of the droplet in the absence of an external magnetic field2 (Fig. 2b). 
These simplified models were the first steps towards understanding 
topological insulators. But it was unclear how realistic the models were: 
in real materials, there is mixing of spin-up and spin-down electrons, 
and there is no conserved spin current. It was also unclear whether the 
edge state of the droplet in Fig. 2b would survive the addition of even 
a few impurities.

In 2005, a key theoretical advance was made by Kane and Mele3. 
They used more realistic models, without a conserved spin current, 
and showed how some of the physics of the quantum spin Hall effect 
can survive. They found a new type of topological invariant that could 
be computed for any 2D material and would allow the prediction of 
whether the material had a stable edge state. This allowed them to show 
that, despite the edge not being stable in many previous models, there are 
realistic 2D materials that would have a stable edge state in the absence of 
a magnetic field; the resultant 2D state was the first topological insulator 
to be understood. This non-magnetic insulator has edges that act like 
perfectly conducting one-dimensional electronic wires at low tempera-
tures, similar to those in the quantum Hall effect.

Subsequently, Bernevig, Hughes and Zhang made a theoretical 
prediction that a 2D topological insulator with quantized charge con-
ductance along the edges would be realized in (Hg,Cd)Te quantum 
wells4. The quantized charge conductance was indeed observed in this 
system, as a quantum-Hall-like plateau in zero magnetic field, in 2007 
(ref. 5). These experiments are similar to those on the quantum Hall 
effect in that they require, at least so far, low temperature and artificial 
2D materials (quantum wells), but they differ in that no magnetic field 
is needed.

Going 3D
The next important theoretical development, in 2006, was the 
realization6–8 that even though the quantum Hall effect does not general-
ize to a genuinely 3D state, the topological insulator does, in a subtle way. 
Although a 3D ‘weak’ topological insulator can be formed by layering 
2D versions, similar to layered quantum Hall states, the resultant state 
is not stable to disorder, and its physics is generally similar to that of the 
2D state. In weak topological insulators, a dislocation (a line-like defect 

in the crystal) will always contain a quantum wire like that at the edge 
of the quantum spin Hall effect (discussed earlier), which may allow 2D 
topological insulator physics to be observed in a 3D material9.

There is also, however, a ‘strong’ topological insulator, which has a 
more subtle relationship to the 2D case; the relationship is that in two 
dimensions it is possible to connect ordinary insulators and topologi-
cal insulators smoothly by breaking time-reversal symmetry7. Such a 
continuous interpolation can be used to build a 3D band structure that 
respects time-reversal symmetry, is not layered and is topologically non-
trivial. It is this strong topological insulator that has protected metallic 
surfaces and has been the focus of experimental activity.

Spin–orbit coupling is again required and must mix all components of 
the spin. In other words, there is no way to obtain the 3D strong topologi-
cal insulator from separate spin-up and spin-down electrons, unlike in 
the 2D case. Although this makes it difficult to picture the bulk physics of 
the 3D topological insulator (only the strong topological insulator will be 
discussed from this point), it is simple to picture its metallic surface6.

The unusual planar metal that forms at the surface of topological 
insulators ‘inherits’ topological properties from the bulk insulator. 
The simplest manifestation of this bulk–surface connection occurs at 
a smooth surface, where momentum along the surface remains well 
defined: each momentum along the surface has only a single spin state 
at the Fermi level, and the spin direction rotates as the momentum 
moves around the Fermi surface (Fig. 3). When disorder or impurities 
are added at the surface, there will be scattering between these surface 
states but, crucially, the topological properties of the bulk insulator do 
not allow the metallic surface state to vanish — it cannot become local-
ized or gapped. These two theoretical predictions, about the electronic 
structure of the surface state and the robustness to disorder of its metallic 
behaviour, have led to a flood of experimental work on 3D topological 
insulators in the past two years.

Experimental realizations
The first topological insulator to be discovered was the alloy BixSb1−x, 
the unusual surface bands of which were mapped in an angle-resolved 
photoemission spectroscopy (ARPES) experiment10,11. In ARPES exper-
iments, a high-energy photon is used to eject an electron from a crystal, 
and then the surface or bulk electronic structure is determined from an 
analysis of the momentum of the emitted electron. Although the surface 
structure of this alloy was found to be complex, this work launched a 
search for other topological insulators.

Figure 1 | Metallic states are born when a surface unties ‘knotted’ electron 
wavefunctions. a, An illustration of topological change and the resultant 
surface state. The trefoil knot (left) and the simple loop (right) represent 
different insulating materials: the knot is a topological insulator, and the 
loop is an ordinary insulator. Because there is no continuous deformation 
by which one can be converted into the other, there must be a surface where 
the string is cut, shown as a string with open ends (centre), to pass between 
the two knots; more formally, the topological invariants cannot remain 

defined. If the topological invariants are always defined for an insulator, 
then the surface must be metallic. b, The simplest example of a knotted 3D 
electronic band structure (with two bands)35, known to mathematicians as 
the Hopf map. The full topological structure would also have linked fibres 
on each ring, in addition to the linking of rings shown here. The knotting 
in real topological insulators is more complex as these require a minimum 
of four electronic bands, but the surface structure that appears is relatively 
simple (Fig. 3).
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approached, the gap at K gets smaller and smaller. Finally,
exactly at !! / t2"cr the bands touch at K in such a way that the
dispersion relation is linear. Such points are also referred to
as Dirac points. When going further into the Chern-insulator
region, the bands separate again. Note that our specific
choice of t1=1 and t2=1/3 prevents the bands from overlap-
ping. If ! and t2 sin " are both chosen to be zero, two Dirac
points form at K and K! and the Haldane model then be-
comes an appropriate model for a graphene sheet.20

In the normal-insulator region of the Haldane model the
Chern number of each band is zero, so that the total Chern
number !the sum of the Chern numbers of the upper and
lower bands" is obviously also zero. When the phase bound-
ary is crossed, the Chern numbers of the upper and lower
bands become ±1, but their sum still remains zero. The clo-
sure and reopening of the gap as the NI/CI boundary is
crossed corresponds to the “donation” of a Chern unit from
one band to another through the temporarily formed Dirac
point. In the present case, the total Chern number must al-
ways remain zero because the model, having a tight-binding
form, assumes Wannier representability of the overall band
space and a nonzero Chern number is inconsistent with such
an assumption. More generally, the total Chern number of a
group of bands should not change when a gap closure and

reopening occurs among the bands of the group, as long as
the gaps between this group and any lower or higher bands
remains open.

It is possible to argue on very general grounds that a finite
sample cut from a Chern insulator must have conductive
channels, otherwise known as chiral edge states, that circu-
late around the perimeter of the sample21 in much the same
way as for the quantum Hall effect.22,23 It is therefore of
interest to investigate the electronic structure of the Haldane
model from the point of view of the surface band structure.
We consider a sample that is finite in the b3 direction !spe-
cifically, 30 cells wide" and has periodic boundary conditions
along the b2 direction #the bi are defined above Eq. !4"$; its
states can be labeled by a wave vector ky running from −# /a
to +# /a, where a is the repeat unit in the y direction. The
energy eigenvalues are plotted versus ky for several values of
! / t2 in Fig. 4. At first sight, the surface band structure shows
qualitatively the same information as the bulk band structure
in Fig. 3. For ! / t2=6, the valence and conduction bands are
separated by a finite gap. At the Chern transition a Dirac
point forms, showing the characteristic linear dispersion ex-
pected around such a point. However, when we go deeper
into the Chern insulator, the surface band structure reveals a
new behavior: one surface band now crosses from the lower
manifold to the upper one with increasing ky, and another
crosses in the opposite direction. Further inspection shows
that the upgoing and downgoing states are localized to the
right and left surfaces of the strip, respectively. Thus, if the
Fermi level lies in the bulk gap, there will be metallic states
with Fermi velocities parallel to the surfaces and with oppo-
site orientation—i.e., a chiral !counterclockwise" circulation
of edge states around the perimeter of the sample, as ex-
pected.

-1 -0.5 0 0.5 1
ϕ  [in units of π]

-6

-4

-2

0

2

4

6

∆/
t 2

= 0

= 0

= -1 = +1

3.67

C

C

C

C

FIG. 2. Chern number of the bottom band of the Haldane model
as a function of the parameters " and ! / t2 !t1=1, t2=1/3". The
vertical line shows the range of parameters that we have chosen for
all our calculations.
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symmetry lines for several values of ! / t2 along the path marked in
Fig. 2. The inset shows a magnification of the bands at K. Note that
at !! / t2"cr the dispersion is linear.
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chiral edge states are visible.
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Ground state wavefunctions differently “knotted” in k space
Topological order very robust
C1 switched only via a metallic state: “cutting the knot”
Displays quantum Hall effect at B = 0
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Bulk-boundary correspondence

C1 ̸= 0

C1 = 0

J. Phys. A: Math. Theor. 44 (2011) 113001 Topical Review

(c)(b)(a)

(d )

(g)(e) (f )

Figure 2. (a) The bulk spectrum of Haldane Hamiltonian (equation (1)) (t = 0 and η = 0.1) as
a function of (k1, k2). (b) The energy spectrum of the same Hamiltonian when restricted on an
infinitely long ribbon with open boundary conditions at the two edges. The spectrum is represented
as a function of k parallel to the ribbon’s edges. (c) The local density of states (see equation (6)) of
the ribbon, plotted as an intensity map in the plane of energy (vertical axis) and unit cell number
along the red line shown in panel (d) (horizontal axis). Blue/red colors correspond to low/high
values. (d) Illustration of the ribbon used in the calculations shown in panels (b, c) and (f, g). The
ribbon was 50 unit cells wide. (e–g) Same as (a–c) but for t = 0.1 and τ = 0.

bring major qualitative differences. For some values such as t = 0.1 and η = 0, the energy
spectrum for the ribbon geometry displays an insulating energy gap, while for values like
t = 0 and η = 0.1 it does not. Things become even more intriguing if we look at this spectrum
as a function of the momentum parallel to the direction of the ribbon. Examining panels (b)
and (f ) of figure 2, we see that when t = 0 and η = 0.1, the spectrum displays two solitary
energy bands crossing the bulk insulating gap. For t = 0.1 and η = 0, we can still see two
solitary bands but they do not cross the bulk insulating gap. If we let the computer run for
a while, picking random points in the (t, η) plane, it will slowly reveal that this plane splits
into regions were the model displays bands that cross the insulating gap like in figure 2(b) and
regions where the insulating gap remains open like in figure 2(f ). These regions are shown
in figure 3.

It is instructive to also take a look at the maps of the local density of states
(LDOS):

ρ(ϵ,n) = 1
π

Im{(H0 − ϵ − i0+)−1(n,n)}, (6)

which will reveal the spatial distribution of the quantum states. The ρ(ϵ,n) written above
depends on three variables, the energy plus the two spatial coordinates, but for a homogeneous

9

bulk ribbon



. . . . . .

Outline

1 Geometry and topology entering quantum mechanics

2 What topology is about

3 Topology shows up in electronic structure

4 TKNN invariant (a.k.a. Chern number)

5 Haldanium

6 Topological marker in r space

7 Conclusions



. . . . . .

Manifesto: k space vs. r space

Periodic boundary conditions and k vectors are a (very
useful) creation of our mind: they do not exist in nature.

Topological order must be detected even:
Inside finite samples (e.g. bounded crystallites)
In noncrystalline samples
In macroscopically inhomogeneous samples
(e.g. heterojunctions)

In all such cases, the k vector does not make much sense
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Manifesto: k space vs. r space

Is it possible to get rid of k vectors and to detect instead
topological order directly in r space?
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Mapping topological order in coordinate space
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The organization of the electrons in the ground state is classified by means of topological invariants, defined
as global properties of the wave function. Here we address the Chern number of a two-dimensional insulator and
we show that the corresponding topological order can be mapped by means of a “topological marker,” defined
in r space, and which may vary in different regions of the same sample. Notably, this applies equally well to
periodic and open boundary conditions. Simulations over a model Hamiltonian validate our theory.
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Topological insulators are sharply distinguished from nor-
mal ones by the manner in which the electronic ground
state is topologically “twisted” or “knotted” in k space.1,2

But topological order must reflect a peculiar organization of
the electrons even when the concept of k space does not
apply, such as for inhomogeneous systems, as well as for
finite systems within open boundary conditions. We address
here the archetypical topological invariant, namely, the first
Chern number C, defined for a many-electron system in
two dimensions (2D), and we show that the corresponding
topological order also bears a very clear signature in r space.
We introduce a “topological marker,” which may vary in
different regions of the same sample, and we validate our
expression by means of simulations on a model Hamiltonian,
performed on finite samples within open boundary conditions.
Our test cases include crystalline as well as disordered samples,
and heterojunctions.

For a lattice-periodical system of independent electrons the
Chern number [also referred to as the Thouless-Kohmoto-
Nightingale–den Nijs (TKNN) invariant3] C is expressed as
a 2D Brillouin-zone integral. For a disordered and macro-
scopically homogeneous system, C has a known expression
in a supercell framework,4,5 also formulated in k space.
The concept of k space is rooted in the periodic boundary
conditions (or generalizations thereof), while instead our
topological marker samples the electronic ground state locally.
The choice of boundary conditions becomes irrelevant in the
limit of a large sample.

For a system of independent electrons, within either
periodic or open boundary conditions, the ground state
is uniquely determined by the one-particle density matrix,
also referred to as the ground-state projector P (r,r′); it is
a “nearsighted”6–8 operator, exponentially decreasing with
|r − r′| in insulators, even when C ̸= 0.9 Our major result
is expressing the topological marker in terms of P directly,
Eqs. (8) and (9) below, where the one-particle orbitals do not
appear.

Let unk(r) = e−ik·rψnk(r) be the periodic part of the Bloch
orbitals, normalized in the unit cell of area Ac. The standard
expression of the Chern invariant in a 2D lattice-periodical
insulator is10

C = − 1
π

Im
Nc∑

n=1

∫

BZ
dk

〈
∂

∂kx

unk

∣∣∣∣
∂

∂ky

unk

〉
; (1)

we assume single occupancy (“spinless electrons”) through-
out. In Eq. (1) Nc is the number of occupied bands, and the
integral is over the Brillouin zone; C is guaranteed to be an
integer and is gauge invariant, i.e., invariant either by unitary
transformations of the occupied orbitals among themselves, or
by a change of the magnetic gauge. It characterizes therefore
the many-electron ground state, not the Hamiltonian.

We start inserting a complete set of states into Eq. (1),

C =− 1
π

Im
Nc∑

n=1

∞∑

n′=Nc+1

∫

BZ
dk

〈
∂

∂kx

unk

∣∣∣∣un′k

〉 〈
un′k

∣∣∣∣
∂

∂ky

unk

〉
,

(2)

where the missing terms are real. Then, by some manipulations
which are standard in linear-response theory,11 we have

⟨un′k|∇kunk⟩ = −i⟨ψn′k| r |ψnk⟩, n ̸= n′. (3)

We stress that, while the position operator r is ill defined within
periodic boundary conditions,12 its off-diagonal elements over
the Hamiltonian eigenstates are well defined; more accurately,
Eq. (3) should be interpreted as a definition of such elements.
Then

C = − 1
π

Im
Nc∑

n=1

∞∑

n′=Nc+1

∫

BZ
dk⟨ψnk| x |ψn′k⟩⟨ψn′k| y |ψnk⟩

= − 1
π

Ac

(2π )2
Im

Nc∑

n=1

∞∑

n′=Nc+1

∫

BZ
dk

×
∫

BZ
dk′⟨ψnk| x |ψn′k′ ⟩⟨ψn′k′ | y |ψnk⟩, (4)

where the second line owes to the fact that the matrix
elements vanish for k ̸= k′. Next we recognize the ground-
state projector P and its complement Q = 1 − P ,

P = Ac

(2π )2

Nc∑

n=1

∫

BZ
dk|ψnk⟩⟨ψnk|,

Q = Ac

(2π )2

∞∑

n′=Nc+1

∫

BZ
dk′|ψn′k′ ⟩⟨ψn′k′ |. (5)

241106-11098-0121/2011/84(24)/241106(4) ©2011 American Physical Society
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We design an operator O, explicitly given in the
Schrödinger representation: ⟨r|O|r′⟩

Our operator is well defined both for unbounded crystals
and for bounded samples (e.g. crystallites)

The diagonal ⟨r|O|r⟩ has the meaning of curvature per
unit area in r space

. . . but fluctuates on a microscopic scale

Its trace per unit volume in any macroscopically
homogeneous region of the sample yields C1
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Haldanium flake (OBCs)

RAPID COMMUNICATIONS

RAFFAELLO BIANCO AND RAFFAELE RESTA PHYSICAL REVIEW B 84, 241106(R) (2011)

Equation (4) becomes then the trace over a crystal cell of a
real-space operator:

C = − 1
π

(2π )2

Ac

Im trcell{PxQy}

= 4π

Ac

Im trcell{PxPy}, (6)

where the symmetry of the missing term yields the second
line. By exploiting the general properties of projectors and of
the trace, Eq. (6) can be recast in several equivalent ways.
For lattice models, a similar real-space formula has been
demonstrated in 2006 by Kitaev;13 our proof does not rely
on lattice models and generalizes Kitaev’s result to realistic
implementations.

Subsequent work adopting Kitaev’s formula was invariably
rooted in k space within a toroidal geometry, for a system
without boundaries, and was based on traces.14–17 Finite
systems within open boundary conditions look problematic.
In fact, if we replace the trace over the cell with the trace over
the whole sample, the identity

Im tr{PxPy} = 1
2i

tr{[PxP,PyP ]} (7)

guarantees a zero result, whenever P projects over a finite-
dimensional manifold. This confirms that the global topology
is trivial within open boundary conditions, and also hints
that traces must be avoided when addressing finite and/or
inhomogeneous samples.

At variance with previous work based on Kitaev’s formula,
we propose here to directly address the commutator in Eq. (7)
before taking the trace. Let X̃ be the projected x coordinate

X̃(r,r′) =
∫

dr′′ P (r,r′′)x ′′P (r′′,r′), (8)

and similarly Ỹ ; we then identify the topological marker with
the local Chern number as10

C(r) = −2π i

∫
dr′[X̃(r,r′)Ỹ (r′,r) − Ỹ (r,r′)X̃(r′,r)]. (9)

Our definition holds within both periodic and open boundary
conditions; given the shortsightedness of P , in a region of
crystalline periodicity, the cell average of C(r) coincides
with the Chern number C owing to Eq. (6). We expect the
dimensionless function C(r) to fluctuate over microscopic
dimensions; in the nonperiodic case, the cell average has
to be replaced with the macroscopic average, defined as in
electrostatics (see, e.g., Jackson18).

The gauge invariance of C(r) as defined in Eq. (9) deserves a
comment. The ground-state projector P is invariant by unitary
transformations of the occupied orbitals among themselves,
but not by a change of the magnetic gauge. However, the
unitary operator which transforms P is local in coordinate
space, thus ensuring gauge invariance of C(r).

We validate our formal findings by performing simulations
on the Haldane model Hamiltonian;19 it comprises a 2D
honeycomb lattice with two tight-binding sites per primitive
cell with site energies ±", real first-neighbor hoppings t1, and
complex second-neighbor hoppings t2e

±iφ . As a function of
the parameters, this 2D model system may have either C = 0
or C = ±1, according to the phase diagram shown in Fig. 1.

FIG. 1. Chern number of the bottom band of the Haldane model
as a function of the parameters φ and "/t2 (t1 = 1,t2 = 1/3). The
points marked with letters (a)–(e) in this phase diagram are relevant
for the subsequent discussion and figures. In order to avoid special
features, the φ parameter is not a multiple of π/4.

This model has been previously used in several simulations,
providing invaluable insight into orbital magnetization5,20,21

as well as into nontrivial topological features of the electronic
wave function.5,9,19,22,23 At half filling the system is insulating,
except when " = t2 sin φ = 0. In this Rapid Communication
we study, within open boundary conditions, finite flakes of
rectangular shape cut from the bulk, as shown in Fig. 2. We
have addressed homogenous samples where the Hamiltonian
is chosen from various points of the phase diagram (Fig. 1) as
well as disordered and inhomogeneous samples.

Two typical plots for crystalline samples are shown in Fig. 3,
where we have chosen the two points (b) and (c) in Fig. 1,
with C = 0 and C = 1, respectively. The plots confirm that
the local Chern numbers C(i) are equal to either 0 or 1 (as
expected) in the bulk of the sample, while they deviate in the
boundary region. In both cases the negative values compensate
for the positive ones, given that the sum of the C(i) over the
whole sample vanishes. This compensation is most interesting
when C = 1 (right-hand panel). A size analysis shows that the
minimum negative C(i) value scales as L (linear dimension of

FIG. 2. A typical flake, with 2550 sites, showing the honeycomb
lattice of the Haldane model (Ref. 19). The 50 sites on the horizontal
line will be used in all the subsequent one-dimensional plots.
Black and gray circles indicate nonequivalent sites (with on-site
energies ±").

241106-2

Sample of 2550 sites, line with 50 sites
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FIG. 3. Local Chern number (top) and site occupancy (bottom)
for the 50 sites along the line shown in Fig. 2. Left-hand panel: Point
(b) in the phase diagram, Fig. 1. Right-hand panel: Point (c). Notice
the different scales.

the sample): The reason is that the number of bulk sites scales
as L2, while the perimeter scales as L.

We have studied both polar (! ̸= 0) and nonpolar (! = 0)
cases. While in the latter case the two sites are equivalent, they
are no longer so in the former case. This clearly appears in the
site occupancies, also shown Fig. 3. What is surprising is that
the corresponding C(i) values do not show any site alternance,
while we expect only their cell (or macroscopic) average to be
equal to one. We conjecture this to be due to extra symmetry
present in the Haldane model Hamiltonian, actually broken in
disordered samples, discussed below (see Fig. 5).

We have also investigated a few points in the phase
diagram close to the transition between C = 0 and C = 1
at fixed !/t2 = 3.67 and various φ values. Given the finite
size of the system the transition cannot be sharp. The exact
transition for an infinite system occurs at φ/π = 0.25; our
results show that in the bulk of the sample the local Chern
number is zero up to φ/π ≃ 0.17 and one from φ/π ≃ 0.29
onward. At intermediate values the boundary region broadens
considerably and indeed invades the whole sample: This is
shown in Fig. 4.

FIG. 4. Local Chern number for a few points on the line
!/t2 = 3.67, i.e., on the (b)–(c) segment in Fig. 1, close to the
transition from C = 0 to C = 1. The exact transition occurs at
φ/π = 0.25; our five plots correspond (bottom to top) to φ/π =
0.17,0.25,0.27,0.29,0.33.

FIG. 5. Local Chern number (top) and site occupancy (bottom)
for disordered systems (see text). Left-hand panel: Disordered system
along the line (a)–(b) in the phase diagram, Fig. 1. Right-hand panel:
Line (c)–(d). Notice the different scales.

Typical results for disordered—and macroscopically
homogenous—samples are shown in Fig. 5. In the left-hand
panel the sign of ! alternates between the two sublattices,
while its modulus is chosen at random (with uniform distribu-
tion) in the (a)–(b) segment of Fig. 1. In the right-hand panel
the value of ! is chosen at random in the (c)–(d) segment. It
appears clearly that the local Chern numbers C(i) in the bulk
of the sample oscillate around a macroscopic average C = 0
(left-hand panel) and C = 1 (right-hand panel).

Next we show in Fig. 6 our topological marker across a
heterojunction between regions of different topological order,
in two typical cases: a normal insulator joined to a C = 1
insulator, and a junction where C changes sign. In both cases
the marker maps very perspicuously the actual topological
order in the two bulklike regions, while it oscillates at the
interface and at the sample boundary. The virtue of our r-space
approach is clearly demonstrated; the conventional k-space
approach to topological order cannot separate different regions
of inhomogeneous samples.

Finally we analyze the present results from the viewpoint
of the modern theory of the insulating state.7,8 Both Eqs. (1)

FIG. 6. Local Chern number (top) and site occupancy (bottom)
across heterojunctions. Left-hand panel: Hamiltonian parameters as
in (a) and in (b) for the left- and the right-hand halves of the sample,
respectively. Right-hand panel: Parameters as in (e) and in (c) for left-
and the right-hand halves of the sample.

241106-3

Topological marker (top); site occupancy (bottom)
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FIG. 3. Local Chern number (top) and site occupancy (bottom)
for the 50 sites along the line shown in Fig. 2. Left-hand panel: Point
(b) in the phase diagram, Fig. 1. Right-hand panel: Point (c). Notice
the different scales.

the sample): The reason is that the number of bulk sites scales
as L2, while the perimeter scales as L.

We have studied both polar (! ̸= 0) and nonpolar (! = 0)
cases. While in the latter case the two sites are equivalent, they
are no longer so in the former case. This clearly appears in the
site occupancies, also shown Fig. 3. What is surprising is that
the corresponding C(i) values do not show any site alternance,
while we expect only their cell (or macroscopic) average to be
equal to one. We conjecture this to be due to extra symmetry
present in the Haldane model Hamiltonian, actually broken in
disordered samples, discussed below (see Fig. 5).

We have also investigated a few points in the phase
diagram close to the transition between C = 0 and C = 1
at fixed !/t2 = 3.67 and various φ values. Given the finite
size of the system the transition cannot be sharp. The exact
transition for an infinite system occurs at φ/π = 0.25; our
results show that in the bulk of the sample the local Chern
number is zero up to φ/π ≃ 0.17 and one from φ/π ≃ 0.29
onward. At intermediate values the boundary region broadens
considerably and indeed invades the whole sample: This is
shown in Fig. 4.

FIG. 4. Local Chern number for a few points on the line
!/t2 = 3.67, i.e., on the (b)–(c) segment in Fig. 1, close to the
transition from C = 0 to C = 1. The exact transition occurs at
φ/π = 0.25; our five plots correspond (bottom to top) to φ/π =
0.17,0.25,0.27,0.29,0.33.

FIG. 5. Local Chern number (top) and site occupancy (bottom)
for disordered systems (see text). Left-hand panel: Disordered system
along the line (a)–(b) in the phase diagram, Fig. 1. Right-hand panel:
Line (c)–(d). Notice the different scales.

Typical results for disordered—and macroscopically
homogenous—samples are shown in Fig. 5. In the left-hand
panel the sign of ! alternates between the two sublattices,
while its modulus is chosen at random (with uniform distribu-
tion) in the (a)–(b) segment of Fig. 1. In the right-hand panel
the value of ! is chosen at random in the (c)–(d) segment. It
appears clearly that the local Chern numbers C(i) in the bulk
of the sample oscillate around a macroscopic average C = 0
(left-hand panel) and C = 1 (right-hand panel).

Next we show in Fig. 6 our topological marker across a
heterojunction between regions of different topological order,
in two typical cases: a normal insulator joined to a C = 1
insulator, and a junction where C changes sign. In both cases
the marker maps very perspicuously the actual topological
order in the two bulklike regions, while it oscillates at the
interface and at the sample boundary. The virtue of our r-space
approach is clearly demonstrated; the conventional k-space
approach to topological order cannot separate different regions
of inhomogeneous samples.

Finally we analyze the present results from the viewpoint
of the modern theory of the insulating state.7,8 Both Eqs. (1)

FIG. 6. Local Chern number (top) and site occupancy (bottom)
across heterojunctions. Left-hand panel: Hamiltonian parameters as
in (a) and in (b) for the left- and the right-hand halves of the sample,
respectively. Right-hand panel: Parameters as in (e) and in (c) for left-
and the right-hand halves of the sample.
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FIG. 3. Local Chern number (top) and site occupancy (bottom)
for the 50 sites along the line shown in Fig. 2. Left-hand panel: Point
(b) in the phase diagram, Fig. 1. Right-hand panel: Point (c). Notice
the different scales.

the sample): The reason is that the number of bulk sites scales
as L2, while the perimeter scales as L.

We have studied both polar (! ̸= 0) and nonpolar (! = 0)
cases. While in the latter case the two sites are equivalent, they
are no longer so in the former case. This clearly appears in the
site occupancies, also shown Fig. 3. What is surprising is that
the corresponding C(i) values do not show any site alternance,
while we expect only their cell (or macroscopic) average to be
equal to one. We conjecture this to be due to extra symmetry
present in the Haldane model Hamiltonian, actually broken in
disordered samples, discussed below (see Fig. 5).

We have also investigated a few points in the phase
diagram close to the transition between C = 0 and C = 1
at fixed !/t2 = 3.67 and various φ values. Given the finite
size of the system the transition cannot be sharp. The exact
transition for an infinite system occurs at φ/π = 0.25; our
results show that in the bulk of the sample the local Chern
number is zero up to φ/π ≃ 0.17 and one from φ/π ≃ 0.29
onward. At intermediate values the boundary region broadens
considerably and indeed invades the whole sample: This is
shown in Fig. 4.

FIG. 4. Local Chern number for a few points on the line
!/t2 = 3.67, i.e., on the (b)–(c) segment in Fig. 1, close to the
transition from C = 0 to C = 1. The exact transition occurs at
φ/π = 0.25; our five plots correspond (bottom to top) to φ/π =
0.17,0.25,0.27,0.29,0.33.

FIG. 5. Local Chern number (top) and site occupancy (bottom)
for disordered systems (see text). Left-hand panel: Disordered system
along the line (a)–(b) in the phase diagram, Fig. 1. Right-hand panel:
Line (c)–(d). Notice the different scales.

Typical results for disordered—and macroscopically
homogenous—samples are shown in Fig. 5. In the left-hand
panel the sign of ! alternates between the two sublattices,
while its modulus is chosen at random (with uniform distribu-
tion) in the (a)–(b) segment of Fig. 1. In the right-hand panel
the value of ! is chosen at random in the (c)–(d) segment. It
appears clearly that the local Chern numbers C(i) in the bulk
of the sample oscillate around a macroscopic average C = 0
(left-hand panel) and C = 1 (right-hand panel).

Next we show in Fig. 6 our topological marker across a
heterojunction between regions of different topological order,
in two typical cases: a normal insulator joined to a C = 1
insulator, and a junction where C changes sign. In both cases
the marker maps very perspicuously the actual topological
order in the two bulklike regions, while it oscillates at the
interface and at the sample boundary. The virtue of our r-space
approach is clearly demonstrated; the conventional k-space
approach to topological order cannot separate different regions
of inhomogeneous samples.

Finally we analyze the present results from the viewpoint
of the modern theory of the insulating state.7,8 Both Eqs. (1)

FIG. 6. Local Chern number (top) and site occupancy (bottom)
across heterojunctions. Left-hand panel: Hamiltonian parameters as
in (a) and in (b) for the left- and the right-hand halves of the sample,
respectively. Right-hand panel: Parameters as in (e) and in (c) for left-
and the right-hand halves of the sample.

241106-3

Topological marker (top); site occupancy (bottom)



. . . . . .

Outline

1 Geometry and topology entering quantum mechanics

2 What topology is about

3 Topology shows up in electronic structure

4 TKNN invariant (a.k.a. Chern number)

5 Haldanium

6 Topological marker in r space

7 Conclusions



. . . . . .

Conclusions and perspectives

Topological invariants and topological order
Wave function “knotted” in k space

Topological invariants are measurable integers
Very robust (“topologically protected”)
Most spectacular: quantum Hall effect

Topological order without a B field: topological insulators

Topological order is (also) a local property of the ground-state
wave function: Our simulations


