Fare fisica con il computer

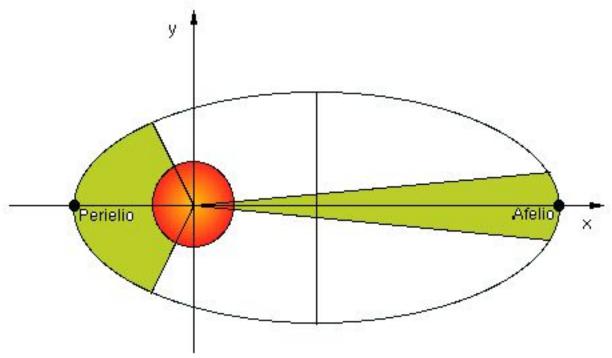
LE LEGGI DI KEPLERO

"Studiare Fisica a Trieste"

(M. Peressi – G. Pastore) 2/9/2019

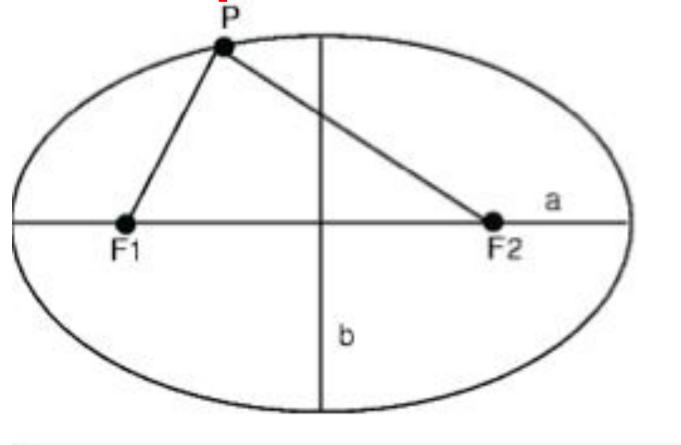
Domanda: Cosa dicono le leggi di Keplero?

Leggi di Keplero (empiriche!)



- Ogni pianeta si muove (in un piano) su un'orbita ellittica con il sole in uno dei fuochi.
- La velocità di un pianeta cresce quando questo si avvicina al sole, in modo che il raggio vettore spazzi aree uguali in tempi uguali.
- Se T è il periodo e a il semiasse maggiore dell'ellisse, il rapporto T^2/a^3 è lo stesso per tutti i pianeti che orbitano attorno al sole.

Ripassiamo qualcosa sull'ellisse...



ellisse: F_1 , F_2 punti focali (fissi); $PF_1+PF_2=$ costante eccentricità: $e=\sqrt{1-(b/a)^2}$; a e b: semiassi maggiore e minore; misura lo "schiacciamento" dell'ellisse (cerchio: $e=0 \Leftrightarrow a=b$); perielio: punto di minima distanza dal sole;

afelio: punto di massima distanza dal sole.

Domanda: quanto bene è verificata la terza legge?

Pianeta	Mercurio	Venere	Marte	Giove	Saturno	Urano	Nettuno
Semiasse maggiore (10 ⁶ km)	57,91	108,21	227,92	778,57	1433,53	2872,46	4495,06
Periodo orbitale (giorni)	87,969	224,701	686,980	4332,589	10759,22	30685,4	60189

Alcuni satelliti di Giove

Nome semiasse Periodo riv. magg.(km)

lo	421 700	1,769138 giorni		
Europa	671 034	3,551181 giorni		
Ganimede	I 070 4I2	7,154553 giorni		
Callisto	I 882 70 9	16,689018 giorni		
Temisto	7 393 216	129,8276 giorni		
Leda	11 094 000	238,72 giorni		
Imalia	11 451 971	250,37 giorni		
Lisitea	11 740 560	259,89 giorni		
Elara	11 778 034	261,14 giorni		
Dia	12 570 424	287,9310 giorni		

Il nostro percorso

Dalla legge di Newton che collega la forza sul pianeta all' accelerazione dello stesso:

$$\vec{F} = m_{pianeta} \vec{a}$$

e dalla legge di gravitazione universale, cioè la legge di forza:

$$F = |\vec{F}| = G \frac{m_{pianeta} M_{sole}}{r^2}$$

- arriveremo numericamente alle leggi di Keplero.
 - sperimenteremo "cosa succede se" la legge di forza fosse diversa

Come risalire alla legge oraria a partire da F=ma?

Equazioni differenziali (analisi - esatto)

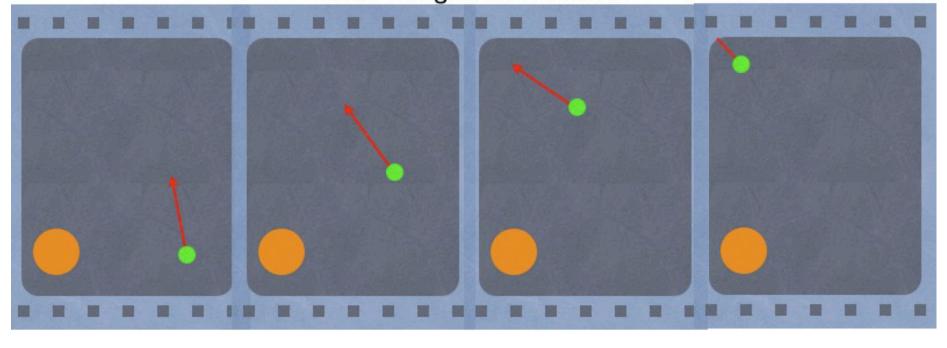
Equazioni discretizzate (analisi numerica - approssimato)

L'idea di base della discretizzazione:
se F = costante => moto uniformemente accelerato

..., come faccio, se **F** =/= costante ...?

a partire da: x(0) v(0)

ricostruiamo il moto "a pezzettini", considerando F (e quindi a) costante tra un fotogramma e l'altro:



L'accelerazione dunque dipende dalla posizione e cambia ad ogni istante di tempo.

Discretizzazione:

Qualunque moto puo' essere "spezzettato" in intervallini di tempo piccoli in cui la variazione di posizione e velocità possa essere ricavata dalla conoscenza della sola accelerazione nell'intervallo:

Solita equazione del moto uniformemente accelerato, ma riferita all'intervallino di tempo $t \div t + \Delta t$, che va ripetutamente applicata da un intervallo a quello successivo (iterazione).

algoritmo di EULERO

iterare
$$x(t+\Delta t) = x(t) + v(t)\Delta t + \frac{1}{2}a(t)\Delta t^2$$

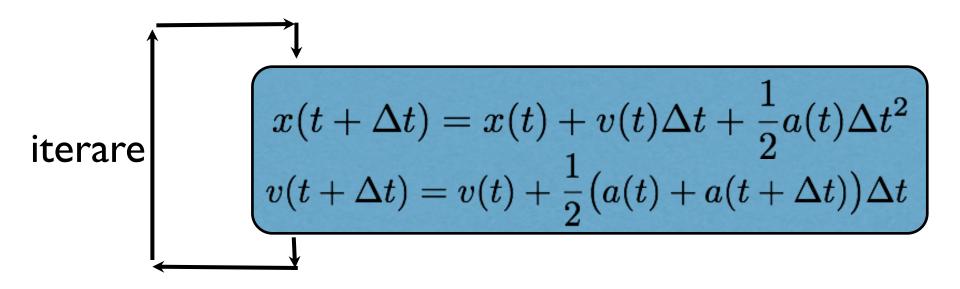
$$v(t+\Delta t) = v(t) + a(t)\Delta t$$

$$x(t) \Longrightarrow x(t + \Delta t) \Longrightarrow x(t + 2\Delta t) \Longrightarrow x(t + 3\Delta t) \Longrightarrow \dots$$

$$v(t) \Longrightarrow v(t + \Delta t) \Longrightarrow v(t + 2\Delta t) \Longrightarrow v(t + 3\Delta t) \Longrightarrow \dots$$

MEGLIO ancora: invece di prendere in ogni intervallino il valore dell'accelerazione all'istante iniziale per calcolare la velocità, prendiamo il suo valor medio tra l'istante iniziale e quello finale dell'intervallino $t \div t + \Delta t$

algoritmo di VERLET



Nota: la nuova accelerazione si può calcolare appena aggiornata la posizione.

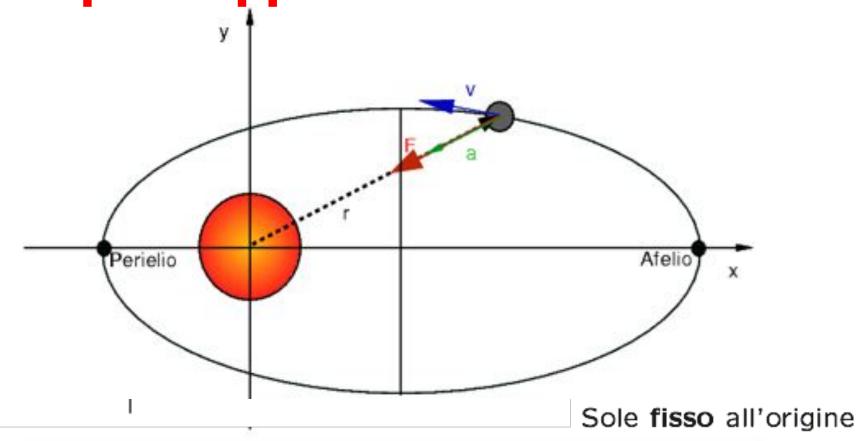
Moto in 2 dimensioni

$$ec{F}=m_{pianeta}ec{a}$$

$$F=|ec{F}|=Grac{m_{pianeta}M_{sole}}{r^2}$$

dal modulo *F* occorre ricavare il vettore Soluzione possibile perché forze centrali

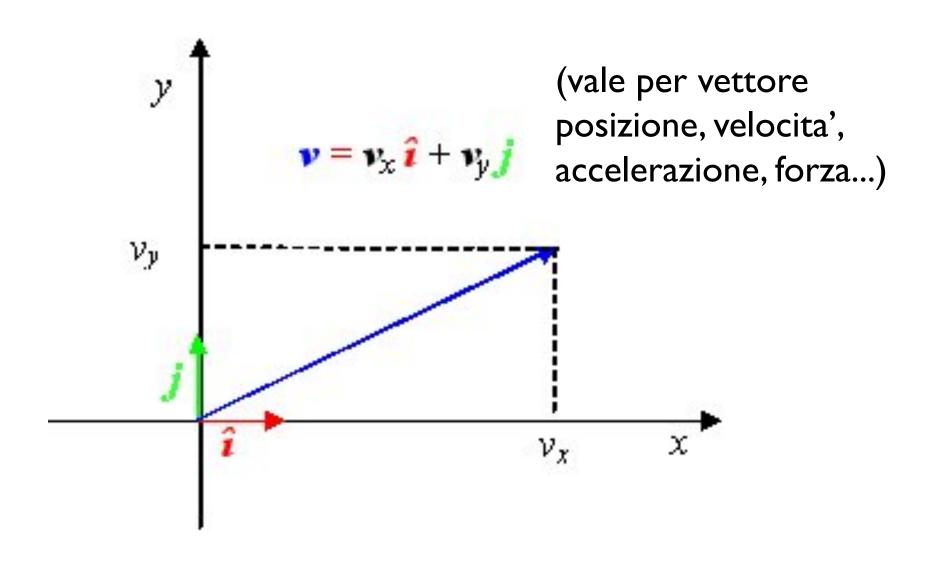
Un sistema di riferimento per l'approccio numerico



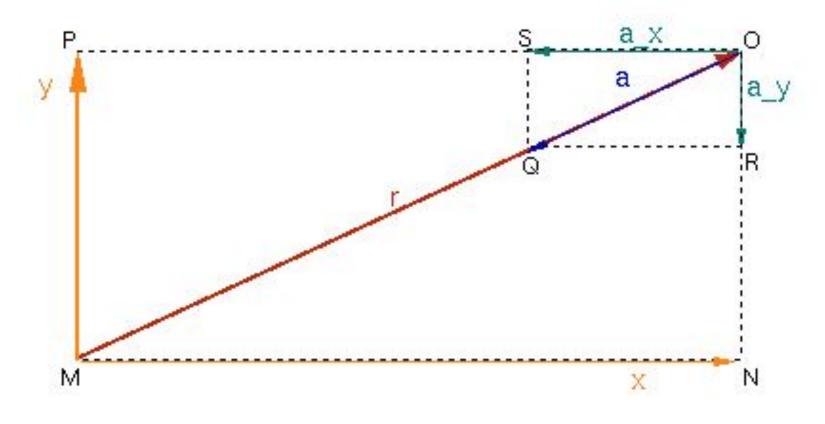
Grandezze importanti: i vettori \vec{r} , \vec{v} , \vec{a} :

```
\vec{r} posizione, congiungente Sole-pianeta; \vec{v} velocità, sempre tangente all'orbita; \vec{a} accelerazione, diretta come \vec{r}, ma dal pianeta al Sole; indica la variazione della velocità in modulo (=valore) e/o verso.
```

Ricordiamo la scomposizione di un vettore $\hat{\mathbf{V}}$ nelle sue componenti $\mathbf{V}_{\mathbf{x}}$, $\mathbf{V}_{\mathbf{y}}$ nel piano cartesiano:



Scomponiamo il moto nelle due componenti cartesiane



 \vec{r} e \vec{a} sono sulla stessa **direzione**. Dalla similitudine dei triangoli MOP e MON rispetto ai triangoli QOR e QOS:

$$a_x = -a\frac{x}{r}, \qquad a_y = -a\frac{y}{r}$$

NB: "-" perchè \vec{a} e \vec{r} hanno versi opposti.

Eguagliamo l'espressione di $F=|\vec{F}|$ (modulo) nella legge di Newton

$$F = m_{pianeta}a$$

e in quella di gravitazione universale:

$$F = G \frac{m_{pianeta} M_{sole}}{r^2}$$

ottenendo:

$$a = G \frac{M_{sole}}{r^2}$$

(NB la massa del pianeta non entra nell'espressione dell'accelerazione ⇒ il moto non dipende dalla massa del pianeta, ma solo da quella del sole.)

Per ogni componente del moto:

$$a_x = -G\frac{M_{sole}}{r^2} \cdot \frac{x}{r} = -G\frac{M_{sole}x}{r^3}$$

$$a_y = -G\frac{M_{sole}}{r^2} \cdot \frac{y}{r} = -G\frac{M_{sole}y}{r^3}$$

Così è implementato in MotoPianeta. java, sia per i valori iniziali dell'accelerazione:

```
// Imposta le condizioni iniziali
  pos_x[0] = pos_x;
  pos_y[0] = pos_0y;
  double r =
Math.sqrt(pos_x\lceil 0 \rceil*pos_x\lceil 0 \rceil+pos_y\lceil 0 \rceil*pos_y\lceil 0 \rceil);
  acc_x[0] = -G*massaSole*pos_x[0]/Math.pow(r,3);
  acc_y[0] = -G*massaSole*pos_y[0]/Math.pow(r,3);
                      a_x = -G \frac{M_{sole}}{r^2} \cdot \frac{x}{r} = -G \frac{M_{sole}x}{r^3}
                      a_y = -G \frac{M_{sole}}{r^2} \cdot \frac{y}{r} = -G \frac{M_{sole}y}{r^3}
```

che per quelli nel generico istante di tempo "i" o "i+1":

```
acc_x[i+1] = -G*massaSole*pos_x[i+1]/Math.pow(r,3);

acc_y[i+1] = -G*massaSole*pos_y[i+1]/Math.pow(r,3);
```

Così è implementato in MotoPianeta.java:

```
// Integra numericamente l'equazione del moto (Verlet)
for (int i=0;i<niter-1;i++) {
    pos_x[i+1] = pos_x[i] + vel_x[i]*dt + 0.5*acc_x[i]*dt*dt;
    pos_y[i+1] = pos_y[i] + vel_y[i]*dt + 0.5*acc_y[i]*dt*dt;
    r = Math.sqrt(pos_x[i+1]*pos_x[i+1]+pos_y[i+1]*pos_y[i+1]);
    acc_x[i+1] = -G*massaSole*pos_x[i+1]/Math.pow(r,3);
    acc_y[i+1] = -G*massaSole*pos_y[i+1]/Math.pow(r,3);
    vel_x[i+1] = vel_x[i] + 0.5*(acc_x[i]+acc_x[i+1])*dt;
    vel_y[i+1] = vel_y[i] + 0.5*(acc_y[i]+acc_y[i+1])*dt;
}</pre>
```

Dati per Sole-Terra

1.99e30 3.1558e7 massa Sole in Kg periodo orbita Terra in secondi

1.521e11 2.929e4 pos.x afelio, in m vel.y, in m/s

SOLE-PLUTONE (maggiore eccentricità)

7.30433e12 3.71e3 pos.x afelio, in m vel.y, in m/s

Oltre Plutone (pianeti nani) Eris ha un semiasse maggiore pari a circa 68 volte quello terrestre

Domanda:

Quali potrebbero essere dei dati iniziali (posizione/velocità) ragionevoli? Che periodo di Rivoluzione possiamo attenderci?

Il sistema solare - parametri utili

Pianeta	Periodo	Raggio medio	Afelio	Massa (unità	Eccentricità
	rivoluzione	dell'orbita (m)	(m)	$massa_{terra})$	$\sqrt{1-(b/a)^2}$
Mercurio	87.97g	5.79×10^{10}	6.97×10^{10}	0.055	0.206
Venere	224.70g	1.08×10^{11}	1.09×10^{11}	0.815	0.007
Terra	365.25g	1.49×10^{11}	1.521×10^{11}	1.0	0.017
Marte	686.98g	2.28×10^{11}	2.491×10^{11}	0.107	0.093
Giove	11.86a	7.78×10^{11}	8.157×10^{11}	317.94	0.048
Saturno	29.46a	1.43×10^{12}	1.507×10^{12}	95.18	0.056
Urano	84.02a	2.87×10^{12}	3.004×10^{12}	14.53	0.046
Nettuno	164.79a	4.50×10^{12}	4.537×10^{12}	17.13	0.010
Plutone	247.70a	5.90×10^{12}	7.375×10^{12}	0.0022	0.248

Domanda:

Le leggi di Keplero sono sempre verificate? In quali casi potremmo attenderci deviazioni? (Suggerimento: quali sono gli ingredienti a partire dai quali siamo in grado di dimostrane la validità?

La legge di gravitazione POCO MODIFICATA

$$\mathbf{F} = \mathbf{G}' \frac{\mathbf{m}_{\mathrm{pianeta}} \mathbf{M}_{\mathrm{sole}}}{\mathbf{r}^{(2+\delta)}}$$

$$a_x = \left(G' \frac{M_{sole}}{r^{(2+\delta)}}\right)_x = \frac{G'M_{sole}x}{r^{(3+\delta)}}$$

La legge di gravitazione MOLTO MODIFICATA

$$\mathbf{F} = \mathbf{G}'' \frac{\mathbf{m}_{\text{pianeta}} \mathbf{M}_{\text{sole}}}{\mathbf{r}^3} \qquad |\delta| = \mathbf{I}$$

$$a_x = \left(G'' \frac{M_{sole}}{r^3}\right)_x = \frac{G'' M_{sole} x}{r^4} \quad (idem \ per \ a_y)$$

Oppure

(forza su satellite in orbita equatoriale; la deviazione dalla forza di Newton è dovuta al rigonfiamento Equatoriale)

$$rac{GM}{r^2} \Bigg[1 + rac{3}{2} J_2 igg(rac{R}{r}igg)^2 \Bigg]$$

$$R = \text{raggio terrestre}$$

 $J_2 = 1.0826 \cdot 10^{-3}$

Domanda: esistono condizioni di velocità iniziale per cui ritroviamo un orbita chiusa?

Domanda: quanto è facile mantenere un satellite in orbita geostazionaria?