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In this paper we study the dynamics of a harmonic oscillator with laws of motion prescribed by MOND 
(Modified Newtonian Dynamics) in its modified inertia formulation. A differential equation for a 1D 
harmonic oscillator is obtained and several features of its solution are analyzed. Particular attention is 
given to the deep MOND limit regime, where the equations of motion are significantly different from the 
Newtonian one.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

MOND is a kind of dynamics proposed in the ’80s by Milgrom 
[1], [2]. This modification of Newtonian dynamics was proposed to 
fit galaxies rotation curves without using dark matter [3], [4].

A lot of work was done on dynamics of systems subjects to 
gravity like stars and galaxies [5], [6], [7]. The best prediction of 
MOND theory concern the physics of galaxies [8], for example the 
Tully–Fisher and Faber–Jackson relations are in good agreement 
with the MOND paradigm. On the other hand for cluster of galax-
ies MOND doesn’t explain completely the mass discrepancy.

MOND is fundamentally divided in two formulations: modified 
gravity (MG) and modified inertia (MI). Modified gravity involves 
only a modification of the gravitational potential, while modified 
inertia is a modification of all the forces. So in modified inertia 
systems subjects to any kind of forces have a modification of their 
dynamics. MOND was constructed to recover Newtonian dynam-
ics when a � a0 where a is the acceleration of the system and a0
a constant with the dimension of an acceleration. When a � a0
the system is in the so called deep MOND limit (DML). This indi-
cates that is the acceleration which discriminates between Newto-
nian and MOND dynamics. The commonly accepted value of a0 is 
a0 ≈ 1.2 × 10−10 m/s2 and has been obtained by a large amount of 
physical observations. The most complete and recent survey is [9].

In this paper we want to study a one dimensional harmonic 
oscillator with MOND dynamics. Obviously a harmonic oscillator is 
a system which is more reproducible in comparison to galaxy. So 
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if a modification of inertia is really necessary the dynamics of a 
harmonic oscillator could be a good benchmark.

The modified inertia paradigm is a modification of the Newto-
nian equation of the form:

�F = mμ

( |�a|
a0

)
�a (1)

where μ(x) is called interpolating function. This connects the 
Newtonian regime to the DML one, μ(x) is a continuous function. 
In order to do this interpolation the μ(x) has to satisfy the follow-
ing relation:

μ(x) =
{

1 if |x| � 1
x if |x| � 1.

(2)

Looking back to the (1) we have that for accelerations much 
larger than a0 the Newtonian dynamics is recovered. For accelera-
tions much smaller than a0 we get the DML. In this limit the force 
law (1), in one dimension, becomes:

F = m
a2

a0
sgn(a) (3)

where sgn is the sign function.
Actually a more general treatment of MI is based on a modifi-

cation of the kinetic part of the action Sk[�r(t), a0]. In this contest 
the kinetic action is a functional of the whole trajectory, and func-
tion of the constant a0. An action of this kind leads to different 
conserved quantities and adiabatic invariants with respect to MG 
formulation [7]. It is also possible to construct a theory in MI with-
out external field effect (EFE) [10]. We’ll talk more about EFE in the 
discussion of the results. Another fundamental property of such a 
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theory is the non locality in time (under the requirement of Galilei 
invariance) [11], [12].

2. Harmonic oscillator equation

For the harmonic force in 1-D we have:

Fh = −kx (4)

where k is a positive constant which is related to the angular ve-
locity ω of oscillation by the relation k = mω2.

For our purpose of calculation we use the force modification 
law prescription. So equating (1) and (4) we obtain the differential 
equation for the harmonic oscillator with modified inertia. For a 
more general treatment we define some new variables in order to 
have an adimensional equation. We define: y ≡ x

x0
where x0 is the 

maximal amplitude (initial deviation); τ ≡ ωt and ξ ≡ ω2x0
a0

. So the 
equation for the MOND harmonic oscillator reads:

μ(ξ | ÿ|) ÿ = −y. (5)

Equation (5) depends on the parameter ξ . Remembering that 
it is defined as ξ = ω2x0

a0
, it can be thought as a parameter which 

indicates the average acceleration of the system in units of a0. Us-
ing equation (3), we obtain the general equation for the harmonic 
oscillator in DML:

ξ ÿ2sgn( ÿ) = −y. (6)

2.1. More on deep MOND limit

Looking at equation (5), we note that it is the argument of the 
function μ the element which controls the regime of motion. If 
the argument is much greater than 1 then the equation becomes 
the same obtained with Newtonian law. While if the argument is 
much smaller than 1 the equation becomes the (6). Now we want 
to see when the DML occur. The arguments of μ in eq. (5) are ξ
and | ÿ|, so there can be two possibilities.

• ξ � 1, so the typical accelerations of the system are always 
lower than a0. Therefore the system is in the DML for all time 
and also | ÿ| is lower than 1.

• | ÿ| � 1 but ξ > 1. This situation occurs for every system, be-
cause there is always, though small, a range of space where 
the acceleration is lower than a0. This is easy to check: just 
look at the Newtonian equation for harmonic oscillator: ẍ =
ω2x. It’s trivial that for enough small x, the acceleration ẍ can 
be smaller than a0.

It can be demonstrated that in the DML there exist a whole 
family of solutions for the equation of motion [13]. This family of 
solution depends on the particular form of the potential. For the 
harmonic oscillator the family of solutions has the form:

yα = α4 y(τ/α) (7)

with α a real parameter.
Now we prove that (7) is actually a solution of equation (6). 

Let’s start by inserting the expression for yα in (6):

ξ

[
α4 d2

dτ 2
y
( τ

α

)]2

= −α4 y
( τ

α

)

ξ
[
α2 ÿ

( τ

α

)]2 = −α4 y
( τ

α

)
ξ α4 ÿ2

( τ )
= −α4 y

( τ )

α α
⇒ ξ ÿ2
( τ

α

)
= −y

( τ

α

)
(8)

which is equal to (6). We have supposed sgn( ÿ) = 1, this does not 
affect the result. For gravitational potential the family of solutions 
in DML leads to scale invariance for velocity, in accordance with 
the constant velocity of stars at the edge of the galaxies (more 
properly when accelerations are lower than a0). This is not the case 
for the harmonic oscillator where velocity is not scale invariant as 
it can be seen easily from equation (7).

3. Analysis and manipulation of equations

Generally equation (5) can not be solved explicitly. The inter-
polating function makes the differential equation non linear unlike 
the Newtonian one that is linear. This non linearity leads to the 
following feature: if y and ỹ are solution of (5) then ˜̃y = y + ỹ is 
not solution. In other words we cannot superimpose two (or more) 
different solutions.

We will now look for solutions for the differential equation 
with initial conditions: y(0) = 1 and ẏ(0) = 0. The condition 
y(0) = 1 is automatically obtained remembering the definition of 
y: y = x/x0. In fact at the time t = 0, x is equal to x0, so y is equal 
to one. The second condition has been chosen for simplicity. The 
Newtonian equation for the harmonic oscillator reads:

ÿ = −y (9)

with solution:

y(τ ) = cos(τ ) (10)

To go further we have to choose a specific interpolating func-
tion. Two of the most used function are the simple interpolating 
function and standard interpolating function.

μ(x) = x

1 + x
simple interpolating function, (11)

μ(x) =
√

x2

1 + x2
standard interpolating function. (12)

Using these expressions we can find the associated differential 
equations. With the simple interpolating function (11) in equation 
(5) we get:

ξ ÿ2 sgn( ÿ)

1 + ξ | ÿ| + y = 0. (13)

While putting the standard interpolating function (12) in (5) we 
obtain:√

ξ2 ÿ2

1 + ξ2 ÿ2
ÿ + y = 0. (14)

Equation (13) is easier to handle. However (13) in that form is 
not useful. Let’s perform some steps to bring (13) in a more clear 
version. Note that sgn( ÿ) = −sgn(y), so (13) becomes:

−ξ ÿ2 sgn(y)

1 + ξ | ÿ| + y = 0. (15)

Now for y > 0 eq.(15) can be rewritten as:

−ξ ÿ2 − ξ ÿ y + y = 0. (16)

Basically we have to solve a second degree equation:

−ξx2 − ξx y + y = 0 (17)

where we have replaced ÿ with x. Eq. (17) has the two solutions:
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x1,2 = − y

2
±

√
y2

4
+ y

ξ
. (18)

Only the solution with the minus sign has physical meaning. So 
for y > 0 (13) becomes:

ÿ = − y

2
−

√
y2

4
+ y

ξ
. (19)

In the same way we can find that for y < 0 equation (13) be-
comes:

ÿ = − y

2
+

√
y2

4
− y

ξ
. (20)

From these two differential equation (19), (20) we can see also 
that solutions for the modified inertia harmonic oscillator are os-
cillating functions. Moreover when y > 0, we have that ÿ < 0 so 
the solution is concave; while when y < 0 we have ÿ > 0 so the 
solution is convex.

3.1. Newtonian limit and deep MOND limit

Let us now start looking at the Newtonian limit. It can be ex-
pressed by the formal limit a0 → 0. The parameter ξ is equal to 
ω2x0

a0
, so when a0 goes to 0, ξ → ∞. Taking, for example, equation 

(19) the term with the denominator ξ goes to zero, and the (19)
reduces to:

ÿ = −y (21)

which is exactly the (9). So Newtonian dynamics is recovered.
Now look for the DML. Start with equation (6), it’s easy to check 

that for y > 0 goes to:

ÿ = −
√

y

ξ
. (22)

While for y < 0:

ÿ =
√

− y

ξ
. (23)

These are in agreement with (19) and (20). Indeed the formal limit 
for DML is a0 → ∞, so ξ goes to 0 and the term in (19), (20) with 
ξ in goes to ∞ and thus is the dominant contribution.

4. Precession of motion

Let us recall the harmonic oscillator equations in MONDified 
inertia:

ÿ =

⎧⎪⎪⎨
⎪⎪⎩

− y
2 −

√
y2

4 + y
ξ

if y > 0

− y
2 +

√
y2

4 − y
ξ

if y < 0
0 if y = 0

(24)

Equation (24) can’t be resolved explicitly. We know that so-
lution must be a oscillating C2(R+) function. Absolute value of 
acceleration in modified inertia à la MOND is grater than the New-
tonian one: looking at equation (24) we note the terms inside the 
square roots are greater than y

2 . So when we add it to the first 
term of (24) we had a value greater than y. The r.h.s of Newto-
nian oscillator (9) is exactly y, therefore the MOND acceleration is 
greater than the Newtonian. This is a first clue to a precession of 
motion: a stronger acceleration makes oscillations happen in less 
time. With the word precession we mean that the MOND solution 
get the same value of Newtonian solution but previously in time. 
Looking at Newtonian solution (10) it’s trivial that T = 2π , with 
T the period. We want to find the dependence of the period on 
the ξ of the MOND oscillator. We don’t have exact solutions, so 
we can get only approximated relations. Let us try to describe the 
system like one with constant translational acceleration and zero 
initial velocity. The position reads:

y = y0 + ÿ0
τ 2

2
(25)

In our system acceleration isn’t constant at all and (25) is a 
rude approximation. For ÿ0 we use an average acceleration ¨̄y de-
fined as:

¨̄y = ÿmax − ÿmin

2
. (26)

From equation (24) it’s easy to see that ÿ is maximal (in abso-
lute value) when y = 1 and minimal when y = 0. Replacing these 
values in (24) and than inserting ÿmax and ÿmin in (26) we get:

¨̄y = −1

4
−

√
1

16
+ 1

4ξ
, (27)

¨̄y is calculated for y > 0.
Now in equation (25) we use as ÿ0 expression (27), y0 = 1 and 

y = 0, i.e. we look for a τ̃ ∝ T
4 . Because at a quarter of a period 

the solution has to go to zero.

0 = 1 −
(

1

4
+

√
1

16
+ 1

4ξ

)
τ̃ 2

2
. (28)

Form (28) we get:

τ̃ = 2√
1
2 +

√
1
4 + 1

ξ

, (29)

and so

TMOND ∝ 1√
1
2 +

√
1
4 + 1

ξ

. (30)

Let us call f (ξ) = 1√
1
2 +

√
1
4 + 1

ξ

, it’s easy to check that the New-

tonian limit of f (ξ) is: limξ→∞ f (ξ) = 1. To recover Newtonian 
period T N = 2π we write the “modified” period in this manner:

TMOND ≈ T N f (ξ) = 2π√
1
2 +

√
1
4 + 1

ξ

. (31)

4.1. Deep MOND limit period

For the dependence of the period on ξ in particular in the DML, 
i.e. where MOND dynamics becomes considerable, we can use (22)
(or (23)) to find ¨̄y and then with (25), as we did for (30), we get:

TDML ∝ ξ
1
4 . (32)

In DML ξ is much lower than 1, so the smaller is ξ , the smaller 
is T .
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Fig. 1. Comparison between MOND numerical solution with ξ = 1, and Newtonian 
solution.

Fig. 2. Ten plots of numerical solutions of MONDified equation for harmonic oscilla-
tor. The parameter ξ goes from 1/20 (green line) to 1/200 (black line), with steps 
of 1/20. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

4.2. Further elements on the solutions of equation (24)

As we said before, an exact solution for equation (24) can’t be 
found. So a first search for solution can be done using a simple 
code made with Mathematica. We do a numerical integration of 
equation (24) and compare it with the Newtonian solution (see 
Fig. 1). The expected precession of motion is confirmed.

Looking at Fig. 1 we see that MOND solution is like a cosine 
function with the argument τ modulated by some factor.

In Fig. 2 we see that when the parameter ξ becomes smaller, 
also the period becomes smaller.

Let us keep in mind the definition of y: y = x/x0, and of ξ : 
ξ = ω2x0

a0
. We pay attention in Fig. 2, to get a smaller ξ , having 

fixed ω = √
k/m and a0, the only parameter we can move is x0, i.e. 

the initial displacement. This is a crucial fact, because the period 
in MOND depends on the initial displacement x0 while in New-
tonian dynamics doesn’t. So when the amplitude becomes smaller 
also the period gets smaller. Remember that these arguments are 
valid when the accelerations are lower than a0. In other words, 
Newtonian period is scale invariant (with respect to space coordi-
nates), i.e. isocrone oscillations. In MOND oscillations small enough 
lose isochronism.

Let us try to write an approximated solution for MOND oscil-
lator. Fig. 1 suggests that an good function can be a cosine-like 
function. We saw that MOND period can be approximated by (31), 
so we write a “modulation of frequency” (we use the quotation 
marks because it isn’t a real frequency, as it is dimensionless):

�ξ = 2π
. (33)
TMOND
Fig. 3. The function �(τ) is plotted, the value of ξ is one.

An approximate solution is:

yMOND ≈ cos(�ξ τ ). (34)

To check how good (34) is, we look at the difference in absolute 
value of (34) from the numerical solution ynumerical:

�(τ) = |ynumerical − yMOND|. (35)

In Fig. 3 there is a plot of (35).
From Fig. 3 we see that going forward with τ the approxima-

tion loses accuracy. This reflect the fact that �ξ does not depends 
only on ξ but for a real solution it must depends also on time: so 
�ξ (τ ). An explicit form for �ξ (τ ) can not be found, we can only 
write that a solution of (24) may be of the form:

yMOND = cos(�ξ (τ ) τ ). (36)

This solution can be considered a physical solution, since it can 
be derived imposing the same two initial condition used for New-
tonian case, and it has a unique frequency for given ξ . We have 
also seen that the period derived in the previous sections has the, 
correct, Newtonian limit. The same behavior of the frequency of a 
harmonic oscillator is also pointed out in [7], [12].

5. Experimental conditions and external field effect

In this section we want to discuss the possibility to implement 
an experiment on Earth which may shows the MOND effects given 
above. To prove the MOND effects experimentally on Earth is not 
trivial at all. We have seen that the reference acceleration a0 is of 
the order of 10−10 m/s2. These are magnitude that we don’t ex-
periment on Earth. The first thing to clarify is: relative to which 
reference system the acceleration has to be small? If we suppose 
that it is sufficient to have small acceleration in an arbitrary refer-
ence of frame, we end up in an inconsistency of the theory with 
the usual rules of acceleration addition. So the right inertial refer-
ence frame (IRF) for a MOND theory must be centered in the center 
of mass of the galaxy, while the axes must be in the direction of 
distant quasars. So to perform an experiment we must be at very 
low acceleration with respect to the IRF [14]. An experiment based 
on Earth called SHLEM was proposed by Ignatiev [15], where it 
shows that with an appropriate choice of position and time on 
Earth it is theoretically possible to test MI on this planet [16].

The complications are not over. The MONDified force formula is 
non linear in acceleration. The non linearity gives rise to the EFE, it 
means that the acceleration of a system influence the subsystems. 
If the acceleration of the bigger system is grater than a0 the exter-
nal field effect has the consequence to bring the subsystem (which 
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we suppose with acceleration of the order of a0) in the Newtonian 
case.

We said in the introduction that it could be possible to built a 
MI theory without EFE, but in this case the experiment discussed 
in [17] helps us. This experiment proved the success of Newton 
law at very slow acceleration on Earth. This lead to the fact that a 
consistent theory must embody the EFE.

6. Conclusions

In this paper we have given a first look at the harmonic oscilla-
tor using the MOND force expression (modified inertia) instead of 
the second law of Newton.

The dynamics of galaxies and of the stars which are inside them 
is not fully known. The most acclaimed hypothesis to solve the is-
sue of rotation curves is dark matter, but its presence has not yet 
been proven. MOND arises as an alternative theory to solve the dy-
namical incongruity with respect to Newton theory without using 
dark matter. To date we do not have a deeper theory which can 
be put forward. So if a kind of modification of the second law of 
newton is necessary some real physics must appear also for sys-
tems that are not subject to gravity but to any other force.

The study done here shows that if a modified inertia à la MOND 
is right in slow accelerations regime (a < a0) than there is a pre-
cession of the motion with respect to the motion expected with 
Newtonian dynamics.

In the previous section we have seen that the problems that 
arise concerning an experiment on Earth are various and non triv-
ial. What we can do is, again, to test the results achieved in an 
astrophysical contest. We remember that every function, very close 
to the minimum can be approximated by a harmonic oscillator 
form (at second order expansion):

f (r) = f (r0) + f ′(r0)(r − r0)

+ f ′′(r0)(r − r0)
2 + O (r3). (37)

So a potential V (r) near the minimum can be approximated by 
a harmonic oscillator.

V (r) = V (r0) + V ′′(r0)(r − r0)
2 (38)
An example of this motion is the vertical oscillation of the sun 
with respect to the galactic plane. As can be seen in the paper 
[18] the vertical motion of the sun can be modeled by a harmonic 
oscillator. Today’s data are increasingly accurate, so a comparison 
between the period of oscillation expected using Newtonian dy-
namics and the MOND one (31) can be done. The fact that some 
oscillations perpendicular to the disk plane can be tested is also 
suggested in [7].

Today it is a challenge to find out if a departure from Newton 
laws of motion may exist. This would be important not only for 
supporting MOND theory, that could be only an effective theory, 
but for understanding if a deeper, more fundamental, theory can 
arise when the accelerations are very low.
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