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Network Science: An Introduction



Motivation and Fundamental Questions

Kublai reflected on the invisible order that sustains cities, on the rules that

decreed how they rise, take shape and prosper, adapting themselves to the

seasons, and then how they sadden and fall in ruins. At times he thought he

was on the verge of discovering a coherent, harmonious system underlying the

infinite deformities and discords (...)

I. Calvino, Invisible Cities, ch.8

“ The main question was: what is the question? ”
A.L. Barabási

Structural complexity

Are there any unifying principles

underlying network’s anatomy?

How does the topology affect the

network’s properties?

Dynamical complexity

How an enormous network of dynamical

systems will behave collectively, given

their individual dynamics and coupling

architecture?
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Definition

Network

A pair of sets G = {P,E}, where

P is a set of N nodes (or vertices

or points) P1, . . . ,PN and E is a

set of edges (or links or lines) that

connect two elements of P.

Examples

• World Wide Web

• Internet

• Cellular Networks

• Ecological Networks

• Citation Network

• Neural Networks

• (...)
Figure 1: Partial map of the Internet (Jan. 15, 2005).
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Methodology

Figure 2: A portion of the molecular interaction map

that controls the mammalian cell cycle. [1]

Complications

i. Structural complexity.

ii. Network evolution.

iii. Connection diversity.

iv. Dynamical complexity.

v. Node diversity.

vi. Meta-complications.

How do we attack the problem?

Methods

of

unravelling complexity.
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Dynamics and Topology of Complex
Networks



Dynamics : Coupled Dynamical Systems

Consider a network of N nodes, each of one is a dynamical

system (fixed topology).

ẋi = f (x̄) , i = 1, . . . ,N

If each node has

• stable fixed points, the network may display an

enormous number of locally stable equilibria.

• a chaotic attractor, they can synchronize their

fluctuations: synchronized chaos.

(see Strogatz, S. H., Nonlinear Dynamics and Chaos)

• a stable limit cycle, the network of (non-)identical

oscillators often synchronize.

Applications:

Models from earthquakes to ecosystems, neurons, neutrinos.

Most inspired by biology: flashing fireflies, wave propagation

in heart, nervous system, brain, intestine (...) [1]
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Topology I : Random Graphs

Figure 3: (a) Regular Network, (b) Fully

Connected Network, (c) Random Graph.

P. Erdős, A. Rényi (1959)

• Algorithm: take any random two points,

connect them with probability p.

Random graphs of N nodes and k edges.

• Degree distribution:

P(k) ∼ e−〈k〉
〈k〉k

k!
, 〈k〉 = pN.

• Critical phenomena i.e. giant cluster.

• Goal: determine at what p a property Q

will most likely arise.

Figure 4: Threshold p ∼ Nz for various subgraphs.
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Topology II : Scale-Free Networks

A. L. Barabási, R. Albert (1999)

http://networksciencebook.com/

• Algorithm:

1. Growth : Start with m0 nodes,

add a new node with m (≤ m0)

edges at every t.

2. Preferential Attachment : The

probability that a new node will

be connected to node i is:

Π(ki ) =
ki∑
j

kj
.

• Degree distribution:

P(k) ∼ k−γ , γ = 3.

• (Dis-)Advantages: Robustness

and resistance to (non-)random

attacks. [2]

Figure 5: (d) Scale Free Network.

Popular Scale-Free Networks:

Social Networks, World Wide Web, Internet,

Citation Network...
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Small-World Networks



Why Small-World?

Small-World topology of networks

lie between completely random

and regular lattice networks.

We can picture these systems like

the ”Six degree of separation”

phenomena.

Examples

• The power grid of the

western United states.

• The neural network of C.

Elegans.

Figure 6: An example of Small World network with

periodic boundary conditions (a ring of nodes).
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Construction of the network

The key-concept of

Watts Strogatz

model of

Small-Wolrld

networks is

interpolation.

Procedure

• Start from a ring

lattice with n

vertices and k

edges.

• Rewire each

edge with

probability p. Figure 7: Visual interpretation of the model
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Global and local properties

Characteristic path

length , L

As the name suggest, it is

the average distance

between two nodes.

It’s a global property!

Clustering coefficient , C

It is a parameter that

tells us how much a node

is connected on average

in the network.

It’s a local property!

Figure 8: L,C as a function of p in the Watts-Strogatz model

These parameters characterize the network

From a local point of view, the transition to Small-World is almost undetectable!
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The role of short cuts

Short cut

Increasing p we are

forcing the system to find

new connections, new

short cuts between the

nodes. How do they

affect the dynamic?

Model of infectious

disease

At each step, the

infective individuals can

infect the neighbours

with probability r .

The architecture

influences the speed

and extent of the

disease trasmission. Figure 9: T is the time required for global infection and rhalf is the

probability at which the disease affects half of the population.
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Coupled phase oscillators with small-world connectivity

This model is a scheme

for neurons in the visual

cortex

Let a set of N oscillators

led by the differential

equations:

dθi

dt
= ωi +

K

N

N∑
j=1

sin (θj − θi )

For K > KC a group

of oscillators

synchronized in phase

appears.

Figure 10: Spontaneous sychronization. Time increases from left to

right, and from top to bottom.
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Outlook



What is left

• Evolutionary models.

• Directed networks , World Wide Web

(Broder et al. 2000)

• Weighted networks (local and global

optimization )

• Models specific for real networks (far from

being random).
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Thank you

for your attention



Plus Ultra



More on Random Graphs

• Subgraphs: The critical probability

at which almost every graph has a

subgraph with k nodes and l edges is:

pc (N) = α N−k/l .

• Few results:

i. 〈k〉 < 1 : a typical graph is composed

of isolated trees.

ii. 〈k〉c = 1 : Threshold value: the

topology changes abruptly.

iii. 〈k〉 > 1 : a giant cluster appears: its

diameter (i.e. maximal distance

between any pair of nodes) is:

d ∝
ln(N)

ln(〈k〉)
.

iv. 〈k〉 > ln(N) : almost every graph is

totally connected.

• Clustering coefficient:

Crand = p =
〈k〉
N

.

• Random graphs and statistical

physics: percolation theory.

Figure 11: Bond percolation in 2D.
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Generalized Random Graphs

Random graphs in which any degree

distribution is allowed.

Figure 12: (a): Boards per director. (b):

Directors per board. (c): Director’s total

number of co-directors.

Newman, Strogatz and Watts, 2000 [1]

Generating functions approach.

Example

Network of the boards of directors of 1000 US

companies (bipartite graph).

pj , qk : probability that a director sits on j

boards and that a board consists of k directors,

respectively.

f0(x) =
∞∑
j=0

pjx
j , g0(x) =

∞∑
k=0

qkx
k .

rz : probability that a random director works

with z other co-directors.

G0(x) = f0

(
g ′0(x)

g ′0(1)

)
,

rz =
1

z!

dzG0

dxz

∣∣∣
x=0

.
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Robustness of real Scale-Free Networks

Internet and WWW

Albert, Jeong and Barabási, 1999, 2000 [2]

• Random errors (e.g. ∼ 0.3% of the routers),

hacker attacks.

• High resistance of the giant cluster for random

removal of nodes. f Ic ∼ 0.03 , f Wc ∼ 0.067 for

attacks.

Figure 13: Relative size S of the largest cluster. (a):

Internet, N=6209. (b): WWW, N=325729.

Ecological Networks

Solé and Montoya, 2001 [2]

• Human action or

environmental changes.

• Parameters:

1. S: Relative size.

2. fEX: Fraction of species

becoming isolated due to

the removal of other species

(secondary extinction).

• Analysis:

i. Random removal: Linear

decrease of S, fEX < 0.1

even for high f .

ii. Keystone species removal:

S ∼ 0 for f ∼ 0.2, fEX ∼ 1

for low f (e.g. for f ∼ 0.16

for Silwood Park Web).
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